Invariant Distributions of Markov Chains

My lecture course in Linyi was all about Markov chains, and we spent much of the final two sessions discussing the properties of invariant distributions. I was not surprised, however, that none of the class chose this topic as the subject for a presentation to give after the end of the teaching week. One of the main problems is that so many rather similar properties are introduced roughly simultaneously. As we did in the class, I thought it was worth making some sort of executive summary, as a mixture of revision and interest.

Definition: \pi is an invariant measure if \pi P=\pi. If in addition \sum_{i\in I}\pi_i=1, then we say it is an invariant distribution. Of course, if I is finite, then any invariant measure can be normalised to give an invariant distribution.

The key initial questions are about existence and uniqueness. First, if there are multiple communicating classes, then an invariant measure (resp. distribution) is a linear (resp. affine) combination of the invariant measures / distributions on each (closed) class. So we restrict attention to irreducible Markov chains.

In the finite case, P is a stochastic matrix so has a column eigenvector with eigenvalue 1, namely the vector with all entries equal to 1. Thus, by reference to general theory in linear algebra, P has a row eigenvector \pi with eigenvalue 1. To paraphrase a remark made by one of my students, what is not clear is that this should be a measure. Demonstrating that this is true is rather non-trivial I think, normally done by reference to the rather more general Perron-Frobenius theorem, though on the flight home I came up with a short argument using Lagrangian duality. For now, we accept existence in the finite case, and note that we typically show existence by showing that the vector of expected time spent in each state between successive visits to a fixed reference state satisfies the properties of an invariant measure.

This is a good moment to note that recurrence is not a necessary condition for the existence of an invariant measure. For example, the random walk on \mathbb{Z}^3 is transient, but the uniform measure is invariant. However, it is not a sufficient condition for the existence of an invariant distribution either. (Of course, an irreducible finite chain is always recurrent, and always has an invariant distribution, so now we are considering only the infinite state space case.) The random walk on \mathbb{Z}^2 is recurrent, but the invariant measure is not normalisable.

The property we in fact need is positive recurrence. This says that the expected return time to each point is finite. Again, this is a class property. This is a common requirement in probabilistic arguments: almost surely finite is often not strong enough to show results if the expectation is infinite (see for example the various requirements for the optional stopping theorem). If this holds, then \pi_i=\frac{1}{\mathbb{E}T_i}, where T_i is the the return time starting from some i\in I.

The final question is ‘Why are we interested?’ One of the best answers is to look at convergence properties. A simple suggestion is this: if we start in equilibrium, then X_0,X_1,X_2,\ldots are all equal in distribution. Note that the dependence structure remains complicated, and much much more interesting than the individual distributions. Next, we observe that a calculation of n-step transition probabilities for a finite chain will typically involve a linear combination of nth powers of eigenvalues. One of the eigenvalues is 1, and the others lie strictly between -1 and 1. We observe in examples that the constant coefficient in p_{ij}^{(n)} is generally a function of j alone, and so p_{ij}^{(n)}\rightarrow\lambda_j, some distribution on I. By considering P^{n+1}=P\cdot P^n, it is easy to see that if this converges, (\lambda_j)_{j\in I} is an invariant distribution. The classic examples which do not work are

P=\begin{pmatrix}0&1\\1&0\end{pmatrix} and P=\begin{pmatrix}0&1&0\\ 0&0&1\\1&0&0\end{pmatrix},

as then the distribution of X_n is a function of the remainder of n modulo 3 alone. With a little thought, we can give a precise classification of such chains which force you to be in particular proper subsets of the state space at regular times n. Chains without this property are called aperiodic, and we can show that distributions for such chains converge to the equilibrium distribution as n\rightarrow\infty.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s