Mixing Times 6 – Aldous-Broder Algorithm and Cover Times

In several previous posts, I’ve discussed the Uniform Spanning Tree. The definition is straightforward: we choose uniformly at random from the set of trees which span a fixed underlying graph. But for a dense underlying graph, there are a very large number spanning trees. Cayley’s formula says that the complete graph K_n has n^{n-2} spanning trees, so to select from this list is impractical.

We seek a better algorithm. In a post about a year ago, I presented the result that the path between two fixed points x and y in the UST is distributed as the path generated by Loop-Erased Random Walk, for which we start at x and delete cycles as they appear. An initial problem might be that this only gives us a single path, which might be enough in some contexts, but in general we will want to specify the whole tree. Wilson’s Algorithm is an unsurprising but useful extension to this equivalence which does just that. You start by constructing the LERW between two vertices, then you add the LERW which connects some other vertex to the path you already have. Then you take a further vertex not currently explored and start LERW there, continuing until you hit the tree that you already have. Iterate this process, which must terminate after at most n steps when there are no vertices which to start from. The tree thus obtained is the UST. The tricky part is proving that the method for selecting which unused vertices to start from has no effect on the distribution of paths between two fixed points.

I want to consider a different algorithm, discovered roughly simultaneously by Aldous and Broder. Start a random walk on the underlying graph at some particular vertex. Every time we traverse an edge which takes us to a vertex we haven’t yet explored, add this edge to the tree. For now I don’t want to give a proof that this algorithm works, but rather to talk about how fast it works, because it ties in nicely with something from the Mixing Times book we’ve been reading recently. It is clear that the algorithm terminates at the first time the random walk has visited every vertex. This is a stopping time, called the cover time of the Markov chain. If we are working with an underlying complete, then we notice that this is annoying, because it means that the cover time will increase like n.log n. That is, it will take an increasingly long time to gather the final few vertices into the tree. Perhaps some combination of Aldous-Broder initially then Wilson’s method for the final o(n) vertices might be preferable?

I want to discuss how to treat this cover time. Often we have information about the hitting times of states from other states \mathbb{E}_x T_y. A relationship between S, the hitting time, defined to be the maximum of the previous display over x and y, and the expected cover time would be useful, especially for a highly symmetric graph like the complete graph where the expected hitting times are all the same.

Matthews’ Method relates these two for an irreducible finite Markov chain on n states. It says:

t_{cov}\leq t_{hit}\left(1+\frac12+\ldots+\frac 1 n\right).

We first remark that this agrees with what we should get for the random walk on the complete graph. There, the hitting time of x from y is a geometric random variable with success probability 1/n, hence expectation is n. The cover time is the standard coupon collector problem, giving expectation n log n, and the sum of reciprocals factor is asymptotically a good approximation.

The intuition is that if we continue until we hit state 1, then reset and continue until we hit state 2, and so on, by the time we hit state n after (n-1) iterations, this is a very poor overestimate of the cover time, because we are actually likely to have hit most states many times. What we want to do really is say that after we’ve hit state 1, we continue until we hit state 2, unless we’ve already done so, in which case we choose a different state to aim for, one which we haven’t already visited. But this becomes complicated because we then need to know the precise conditional probabilities of visiting any site on the way between two other states, which will depend rather strongly on the exact structure of the chain.

Peres et al give a coupling proof in Chapter 11 of their book which I think can be made a bit shorter, at least informally. The key step is that we still consider hitting the sites in order, only now in a random order.

That is, we choose a permutation \sigma\in S_n uniformly at random, and we let T_k be the first time that states \sigma(1),\ldots,\sigma(k) have all been visited. This is a random time that is measurable in the product space, and for each \sigma it is a stopping time.

The key observation is that \mathbb{P}(T_{k+1}=T_k)=1-\frac{1}{k+1}. This holds conditional on any path of the Markov chain because the requirement for the event is that \sigma(k+1) is visited after \{\sigma(1),\ldots,\sigma(k)\}. The statement therefore holds as stated as well as just pathwise. Then, by the SMP, conditional on \{T_{k+1}>T_k\}, we have

T_{k+1}-T_k \leq_{st} t_{hit}.

Note that by the definition of t_{hit}, this bound on the hitting time T_{k+1} is unaffected by concerns about where the chain actually is at T_k (since it is not necessarily at \sigma(k)).

So, removing the conditioning, we have:

\mathbb{E}\Big[T_{k+1}-T_k\Big]\leq\frac{1}{k+1}t_{hit},

and so the telescoping sum gives us Matthews’ result.

One example is the cover time of random walk on the n x n torus, which turns out to be

O(n^2(\log n)^2).

If anyone remembers that Microsoft screensaver from many years ago which started with a black screen and a snake leaving a trail of white pixels as it negotiated the screen, this will be familiar. The last few black bits take a frustratingly long while to disappear. Obviously that isn’t quite a random walk, but it perhaps diminishes the surprise that it should take this long to find the cover time.

There are a couple of interesting things I wanted to say about electrical networks for Markov chains and analytic methods for mixing times, but the moment may have passed, so this is probably the last post about Mixing Times. Plans are in motion for a similar reading group next term, possible on Random Matrices.

Advertisement

1 thought on “Mixing Times 6 – Aldous-Broder Algorithm and Cover Times

  1. Pingback: Generating uniform trees | Eventually Almost Everywhere

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s