The Configuration Model

In the past, I’ve talked about limitations of the Erdos-Renyi model of homogeneous random graphs for applications in real-world networks. In a previous post, I’ve discussed a dynamic model, the Preferential Attachment mechanism, that ‘grows’ a graph dynamically by adding edges from new vertices preferentially to existing vertices with high degree. The purpose of this adjustment is to ensure that the distribution of the degrees is not concentrated around some fixed value (which would be c in G(n,c/n) ) but rather exhibits a power-law tail such as observed in many genuine examples.

In this post, we introduce some aspects of the configuration model, which achieves this property more directly. This idea probably first arose in the guise of regular graphs. Recall a regular graph has all degrees equal. How would we construct a random d-regular graph on a large number of vertices?

What we probably want to do is to choose uniformly at random from the set of such graphs, but it is not clear even how large this set is, let alone how one would order its elements to make it possible to make this uniform choice. Instead, we try the following. Assign to each vertex d so-called stubs, which will end up being ‘half-edges’. We then choose two stubs uniformly at random, and glue them together. More formally, we construct an edge between the host vertices, and then delete the chosen stubs. We then continue.

The construction makes no reference to the distribution of stubs, so we are free to choose this as we please. We could for example specify some sequence of degrees which approximates a power-law, so we could sample a random sequence of degrees in some way. So long as we have a sequence of stub set sizes before we start building the edges of the graph we will be able to use the above algorithm.

So what might go wrong? There seem to me to be three potential problems that might arise with this construction.

Firstly, there might be a stub left over, if the sum of the stub set sizes is odd. Recall that in a graph the sum of the degrees is twice the sum of the number of edges, and so in particular the sum of the degrees should be even. But this is a small problem. When the degree sequence is deterministic we can demand that it have even sum, and if it is random, we will typically be working in a large N regime, and so deleting the solitary stub, if such a thing exists, will not affect the sort of properties of the graph we are likely to be interested in.

The second and third objections are perhaps more serious. If we glue together stubs naively, we might end up with loops, that is, edges that ‘begin’ and ‘end’ at the same vertex. These are not allowed in the standard definition of a graph. Alternatively, we might end up with more than one edge between the same pair of vertices.

Our overall aim is that this mechanism gives a convenient way of simulating the uniform distribution on simple graphs with a given degree sequence. At present we have the uniform distribution on potential multigraphs, with a weighting of 1/k! for every multi-edge with multiplicity k, and a weighting of 1/2 for every loop. The latter can be seen because there is an initial probability proportional to d(v_i)d(v_j) that vertices v_i and v_j will be joined, whereas a probability proportional (with the same constant) to d(v_i)^2 that v_i will receive a loop. The multi-edge weighting justification is similar.

However, conditional on getting a simple graph, the distribution is uniform on the set of simple graphs with that degree sequence. So it remains to investigate the probability that a graph generated in this way is simple. So long as this probability does not tend to 0 as n grows, we will probably be happy.

The strongest results on this topic are due to Janson. First observe that if the sum of the degrees grows faster than the number of vertices n, we fail to get a graph without loops with high probability. Heuristically, note that on the first pass, we are taking two picks from the set of vertices, biased by the number of stubs. By Cauchy-Schwarz, Rearrangement Inequality or just intuition, the probability of getting the same vertex is greater than if we picked uniformly from the set of vertices without biasing. So the probability of getting no loop on the first pass is \le (1-\frac{1}{n}). Take some function a(n) that grows faster than n, but slower than the sum of the degrees. Then after a(n) passes, the degree distribution is still roughly the same. In particular, the sum of the degrees is still an order of magnitude greater than n. So we obtain:

\mathbb{P}(\text{no loops})\leq (1-\frac{1}{n})^{a(n)}\approx e^{-\frac{a(n)}{n}}\rightarrow 0.

So, since isolated vertices have no effect on the simplicity or otherwise, we assume the sum of the degrees is \Theta(n). Then, Janson shows that the further condition

\sum_{i=1}^n d_i^2=O(n),

is essentially necessary and sufficient for simplicity. We can see why this might be true by looking at the probability that the first edge added is a loop, which is roughly

\frac{d_1^2+d_2^2+\ldots+d_n^2}{2(\sum d_i)^2}.

We have to consider O(\sum d_i) edges, so if the above expression is much larger than this, we can perform a similar exponential estimate to show that the probability there are no loops is o(1). The technical part is showing that this probability doesn’t change dramatically as the first few stubs disappear.

Note that in both cases, considering only loops is sufficient for simplicity. Although it looks like loop appearance is weaker than multiplicity of edges, in fact they have the same threshold. It should also be pointed out that, like the uniform random forests, an alternative approach is simply to count the number of simple graphs and multigraphs with a given degree sequence. Good asymptotics can then be found for the probability of simplicity.

In the case of G(n,c/n), we were particularly interested in the emergence of the giant component at time c=1. While first-moment methods can be very effective in demonstrating such results, a branching process local limit representation is probably easiest heuristic for this phase transition.

So long as the degree sequences converge in a natural way, we can apply a similar approach to this configuration model. Concretely, we assume that the proportion of vertices with degree i is \lambda_i in the limit. Although the algebra might push through, we should be aware that this means we are not explicitly specifying how many vertices have degree, eg \Theta(n^{1/2}). For now assume the \lambda_is sum to 1, so specify a probability distribution for degree induced by choosing a vertex uniformly at random.

So we start at a vertex, and look at its neighbours. The expected number of neighbours of this root vertex is \sum i\lambda i. Thereafter, when we consider a child vertex, based on how the stubs are paired up (and in particular the fact that the order of the operations does not matter – the choice of partner of a given stub is chosen uniformly at random), we are really choosing a stub uniformly at random. This corresponds to choosing a vertex at random, biased by the number of stubs available. The quantity of interest is how many additional stubs (other than the one that led to the vertex) are attached to this vertex. We assume we don’t need to worry too much about repeating vertices, in a similar way to G(n,c/n). So the expected number of additional stubs is

\frac{1}{\sum i\lambda_i}\sum i\lambda_i(i-1).

For an infinite component, we required the expectation to be > 1, which is equivalent to

\sum \lambda_i i(i-2)>0.

This was proven by Molloy and Reed (95), then with fewer conditions by Janson (07). The latter also shows how to use this construction to derive the giant component for G(n,c/n) result.

REFERENCES

Janson – A New Approach to the Giant Component Problem

Molloy, Reed – A Critical Point for Random Graphs with a Given Degree Sequence

Janson – The Probability that  Random Multigraph is Simple

Advertisements

One thought on “The Configuration Model

  1. Pingback: Random 3-regular graphs | Eventually Almost Everywhere

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s