Random Maps 3 – Leaves and Geodesics in BCRT

Recall in the previous two posts, we’ve introduced some of the background to maps on various surfaces. In particular, we’ve introduced the remarkable Cori-Vauquelin-Schaeffer bijection which maps between plane trees labelled with uniform increments and quadrangulations of the sphere, up to some careful fiddling around with rooting and pointing an edge.

We are interested in the case where we choose uniformly a large element from these classes. We want to derive a scaling limit for the uniform planar quadrangulation, and we hope that we will be able to carry some properties of the scaling limit of the labelled trees, which may well be simpler, across the CVS bijection. It is convenient that the vertices of the plane tree become the vertices of the quadrangulation. We are looking to find some sort of metric limit, in the Gromov-Hausdorff sense, and so it will remain to deduce exactly how to use the labelling obtained from the tree to gain information about distances in the (limiting) quadrangulation.

Of course, all of this relies on the fact that there is a nice limit for the ordered plane trees in the first place. Unsurprisingly, it turns out that this is Aldous’s Brownian continuum random tree. The easiest way to see this is to consider the contour process of the ordered plane tree. This is chosen uniformly at random from the set of paths from (0,0) to (2n,0) with increments of size {-1,1} and which stay non-negative. It is thus precisely a simple random walk started at (0,0) conditioned to hit (2n,0) and to be non-negative. Since SRW suitably rescaled converges to Brownian motion, it is unsurprising (but not totally trivial) that this conditioned object converges to a Brownian excursion.

The Brownian excursion can be viewed as a continuous analogue of the contour process for the BCRT, but it is more natural to consider this convergence in the Gromov-Hausdorff topology. In this setting, we say that for a large value of n, the tree is ‘roughly isometric’ to the BCRT in distribution. Here, roughly isometric means the two metric spaces can be embedded isometrically into a common metric space such that they are close together, now in the sense of Hausdorff distance.

At this point, it is worth thinking about this interpretation of the BCRT. We have previously considered this as the scaling limit of a uniformly chosen Cayley tree, that is any unrooted tree on n labelled vertices. Essentially, we are now specifying that the BCRT can carry extra information, namely a root, and geometric information about the order of branches. The root is uncontroversial. Canonically, the root of the BCRT will be at the point associated with time 0 in the driving Brownian excursion. However, we can easily check that the distribution of a uniform rooted plane tree is invariant under re-rooting, and so any argument we have for convergence of the rooted trees to the BCRT will work with the root in a different place. Applying something like a tower law, we conclude that the convergence works when the root is chosen uniformly in the limit.

One potential problem to be discussed is what it means to choose a point uniformly in the limit. We have two possible approaches. One is to consider Lebesgue measure on any path in the BCRT, and glue these together. However, we have a uniform stick-breaking construction of the BCRT, and one consequence of the construction is that the total length of sticks required is infinite, so this won’t work.

The other option is to project Lebesgue measure on [0,1] via the same map that sends points on the Brownian excursion to points in the tree. Note that the so-called real tree is constructed from the excursion by identifying points s and t where f(s)=f(t), and f(x)>f(s) for x in (s,t). But then we might wonder whether this can really be said to be ‘uniform’, since different points in the BCRT will have a different number of pre-images in [0,1]. In fact though, it turns out that in this sense, projected-Leb[0,1]-almost all the points in the BCRT are leaves.

To prove this, naturally we first need to define a leaf, in the setting of these continuum trees. The degree of a vertex is an idea we might keep in mind, but we can’t use this, as we don’t have vertices any more. However, we have a continuous analogue of degree, given by counting the number of connected components remaining after removing a vertex. In particular, we can define the set of leaves as

\mathcal{L}(\mathcal{T}):=\{x\in\mathcal{T}:\mathcal{T}\backslash \{x\}\text{ is connected}\}.

We will give a sketch proof of this result about leaves shortly. First, we clarify some notation, and consider properties of geodesics (shortest-length paths) in the tree.

Define \check{f}(u,v):=\min_{x\in[u\wedge v,u\vee v]} f(x) to be the minimum value attained by f between u and v. Consider the value x at which this minimum is attained. Then, projecting onto the tree, p(x) is the ‘most recent common ancestor’ of points u and v. We can make this a bit more precise by considering geodesics in the tree starting at the root. Analogous to the unique path property in a discrete tree, in this continuous setting there is a unique path from the root to any given point, along which the height is strictly increasing. This is not surprising. It follows from one of the definitions of a real tree that the length of the path from p(0) to p(s) should be f(s), and so there is a unique isometric embedding of [0,f(s)] into \mathcal{T}_f which starts at 0 and ends at p(s). Anyway, under this p(\check{f}(s,t)) gives the point at which the geodesics from p(s) to p(0) and from p(t) to p(0) meet.

DSC_4255

Furthermore, we can now describe the distance in the tree between p(s) and p(t). This is given by

d_f(s,t):= f(s)+f(t)-2\check{f}(s,t),

and with the geodesic picture, it is easy to see why. Consider the point x at which \check{f}(s,t) achieves the minimum. As we have said, this lies on the geodesics from p(s) to 0 and p(t) to 0, and paths between points are unique, so removing point x disconnects p(s) and p(t) in the tree. So we need to concatenate the geodesic from p(s) to p(x) and from p(x) to p(t). But these are subsets of the two geodesics discussed, and their respective lengths are f(s)-\check{f}(s,t) and f(t)-\check{f}(s,t).

We can now give a sketch proof the result that almost all the support of \lambda_f, the projection on Lebesgue measure from [0,1] onto \mathcal{T}_{f} is on \mathcal{T}(\mathcal{T}_f).

Given s,t\in[0,1], suppose we are removing p(s), and this separates p(t) from the root, which is canonically p(0). Without loss of generality, take t>s. Now suppose that \check{f}(s,t)<f(s), and that, as before, this infimum is attained at x\in[s,t]. Then the geodesic from p(0) to p(t) will pass through p(x), but not through p(s), so in particular, removing p(s) cannot disconnect p(t) from the root.

Thus, p(s) is not a leaf if and only if there exists some small window [s,t] such that f(s)\le f(x),\;\forall x\in[s,t]. By Blumenthal’s 0-1 law, for fixed x, this happens with probability 0 if f is Brownian motion. Here, f is not Brownian motion, but a Brownian excursion with length 1. However, Blumenthal’s 0-1 law depends on the instantaneous behaviour after time s, ie the sigma field \mathcal{F}_s^+. So, for s\in(0,1), the value of a Brownian at time 1 is independent of this sigma field, so if we imagine Brownian excursion as a ‘conditioned’ Brownian motion, this conditioning should have no effect on the conclusion of this corollary to Blumenthal’s 0-1 law.

This is not a formal argument, but it sketches why with probability 1, p(s) is a leaf for each s\in(0,1), from which the result follows.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s