EGMO 2015

It’s been a while since I last wrote anything substantial. There have been some posts in the pipeline, but mainly I’ve been working hard on technical things that don’t translate very well into blog posts, and when I haven’t been working on those, have felt like doing non-maths.

Anyway, among other things which happened recently were the UK’s IMO selection camp in Cambridge during the last week of March, and the fourth European Girls’ Mathematical Olympiad in Belarus this past weekend. At the former, I was quite busy organising various things, and so gave a session based on some of my favourite problems about points and lines that I’ve used in the past. My hope was that with each problem in turn the students would actively invest time in thinking about whether the ideas each other were having seemed likely to be profitable. The aim was that being critical about your approach is a necessary skill once you start having lots of ideas for approaches.

This is hard to practise at school just by reading around, whether regarding competition material or generally. In the competition world, official solutions often contain unmotivated magic. This is reasonable, since they are supposed to be a minimal elementary demonstration of the problem’s validity. Motivation is a luxury which space and time sometimes doesn’t permit. And the solutions you find on, for example, Mathlinks often give the impression that the solvers know how to do 25,000 specific types of problem, and the sole task is to identify which type the latest one belongs to. Relating problems to ones you’ve seen before is important, but can hide, or at least dilute the actual ideas in some cases. Knowing that a specific inequality is a special case of a big machine allows you to claim a ‘solution’ but doesn’t help you identify the relevant ideas.

Later in the camp, a conversation arose concerning to what extent the younger staff found these elementary methods and problems easier now that they had experienced various levels of higher education in mathematics than when they were at school. It’s a complicated question, and I don’t think there’s a simple answer. I think the students might suspect that doing a university degree teaches you ‘advanced techniques’ which immediately simplify some of these problems. In rare examples this can be the case, but the majority of the time, I personally feel the only advantage I have is perhaps better instincts for whether something is or isn’t going to work.

Probably a good test would be Euclidean geometry. Adult olympiad staff typically come in two flavours: those who used to be good at geometry and feel out of practice; and those who weren’t good at geometry and certainly had no inclination to remedy this after they left school. I’m probably closer to the first category and I definitely feel out of practice, but also have minimal inclination to remedy this. Nonetheless, on the rare occasions I try these questions (and it’s not going to be for 4.5 hours at this stage…) my progress rate is probably comparable to when I was in sixth form. I’ve no idea how to turn this into a more concrete assessment, but there must be something about doing abstract maths all the time that prevents you forgetting how to do this, so presumably it should be at least as helpful in the types of problem with non-zero overlap with things I actually do. I won’t discuss geometry in the rest of this post, but I did also enjoy the geometry questions – it’s simply that I feel anything I have to say about them would be less useful than saying nothing.

In any case, I enjoyed trying the problems from Belarus in between bouts of typing, and thought I would write some brief comments about how I decided whether my ideas were good or not. To achieve this, I’ve looked at my rough, and will tell you the ideas which didn’t work, as well as some of the ones which did. I’ve paraphrased the statements slightly to avoid having too many LaTeX tags.

WARNING: what follows will spoil questions {2,4,5} if you haven’t already looked at them, but would like to.

Question 2 – A domino is a 2 × 1 or 1 × 2 tile. Determine in how many ways exactly n^2 dominoes can be placed without overlapping on a 2n × 2n chessboard so that every 2 × 2 square contains at least two uncovered unit squares which lie in the same row or column.

The wording of the question prompted me to consider splitting the board naturally into n^2 2 x 2 squares. I then thought about this ‘at least’ in the question, and concluded that for these 2 x 2 squares, it should be ‘exactly’.

I tried doing an unusual colouring, when I coloured half the black squares green, and half blue and tried to show that either only greens or only blues were covered, but this was clearly not true, or fixable. I then tried to do something similar for the other set of 2 x 2 squares (those whose vertices have (odd, odd) coordinates). Roughly speaking, if too few of the outer cells on the original board are covered, you can’t achieve the bounds on these odd inner squares. But this didn’t really give any useful information.

However, it did get me thinking about how what happens in the far top-left affects the rest of the board, and from there most of the ideas came quickly. I described a 2 x 2 square as N, E, S, W depending on which ‘half’ of the square was covered. Then if a square is N, all the squares directly above it must be also be N (*).

I then made two mistakes, and if we’re looking for reasons where experience is helpful, it was probably here, as I spotted them fairly quickly, rather than wasting ages and ages.

First, I decided that either all squares were {N,E} or all were {S,W} which seemed plausible when I had been focusing on the top-left. This gave an answer of 2 \binom{2n}{n}, but after a bit more thought is clearly not symmetric enough.

Second, I thought condition (*) might be the only constraint, along with similar ones for E, S, W naturally too. I tried to count these using a similar method of enumerating lines between these regions, and I realised I didn’t know how to do these sensibly, for example if it looked like this:

EGMO15 Q2 diagram (3)

This led to another bit of meta-maths that I probably wouldn’t have considered if I was 16. Namely, that the idea of counting these monotone lines across the 2n x 2n grid was too nice not to be useful. Also, if I couldn’t see a way to adapt it for this more complicated setup, my setup was probably wrong. This thought was useful, and then by thinking about the interface between {N,E} and {S,W}, then the other way round, it made sense that the configuration could be parameterised by two monotone lines between different pairs of corners, giving an answer of \binom{2n}{n}^2.

So, if it’s possible to give a reason why I could do this, it’s probably because I had an arsenal of ways to check an answer for plausibility, which saved wasting time on something wrong, and also because I trusted that the answer would be nice, which saved wasting time on something which was also wrong, and would probably have been very complicated to resolve.

Question 4 – Determine whether there exists an infinite sequence a_1,a_2,\ldots of positive integers satisfying a_{n+2}=a_{n+1}+\sqrt{a_{n+1}+a_n}.

So, my first reaction was ‘no way’. Why? Because everything’s determined by the first two terms, and I couldn’t think of any reason why a cool choice of the first two terms would force all of the sums a_{n+1}+a_n to be perfect squares. It seemed just about possible that we could arbitrarily large finite sequences with this property. (Though this also turns out to be impossible.)

I imagine many contestants might have felt similarly and spent a while playing round with quadratic residues to get a sense for exactly how hard it is to make this work for the initial terms. But I was suspicious of the form of the recurrence. We know that if it had been defined linearly, then the terms would grow exponentially, but it’s natural to ask roughly how fast they grow in this example, even relaxing the restriction that the terms be integers.

The first observation was that they are indeed (strictly) growing! But how fast? Are there actually enough squares that every a_{n+1}+a_n can be a different one? Note that the squares themselves satisfy a similar recurrence relation (N+1)^2 = N^2 + 2\sqrt{N^2} + 1 > N^2 + \sqrt{ N^2 + N^2}. So this seemed like a very good idea, and my instinct was that this should work, and I felt glad that I hadn’t pursued the quadratic residues approach.

From here we were basically home. I asked whether the sequence grows faster than the sequence (\frac{n^2}{2}), and the answer was no as

a_{n+2}\le a_{n+1}+ \sqrt{2 a_{n+1}} \le (\sqrt{a_{n=1}} + \frac{1}{\sqrt 2})^2,

so if (after translating indices) a_n = \frac{x^2}{2}, we have a_{n+1}\le \frac{(x+1)^2}{2}. This is clearly a problem or at best a very tight constraint if all the \{a_n+a_{n+1}\} have to be perfect squares, so even though we aren’t completely finished, I am confident I can be in one or two lines, with a bit of care. Fiddling with small values of n looked like it would work, or showing that looking at a large enough initial subsequence that the effect of the first two terms dissipated, we must by the pigeonhole principle have a_{n+2}+a_{n+1}=(k+1)^2,\, a_{n+1}+a_n=k^2, which is enough by a parity argument, using the original statement.

This final bit looks and feels a bit messy, but by this stage it really is just finding any argument to justify why a sequence which grows at most as fast as n^2 can’t actually be n^2 eventually.

Probably the reason I did this quickly was because I trusted my instinct for ‘no’, and also because there seemed a quick way to qualify *roughly* how this sequence grew. Sensibly approximating things, and deciding whether it’s appropriate to approximate them is definitely something I feel I’ve got better at during my PhD, so I guess this was helpful, then just try and throw back the important condition that the elements were integers at the very end.

Question 5 – Anastasia partitions the integers [1,2m] into pairs. Boris tries to choose one integer from each pair so that the sum is n. Given n and m, prove Anastasia can select pairs so that Boris can’t succeed.

So I wasted some thought time by imagining that n was fixed and trying to come up with ideas for the choice of pairs which might avoid n. It struck me that there was no reason why a a typical (uniformly chosen) pairing should avoid any particular n unless this value was particularly big or small.

How big or how small? Well Boris can always choose the bigger element of a pair, so the way to make the minimum maximum is to pair as (1,2), (3,4), … , (2m-1,2m). Conveniently, this also achieves the maximum minimum. These can be calculated as m^2,m(m+1) respectively. Suddenly this seems great, because we’ve actually solved the problem for a huge range of n, ie everything not within between these extrema.

The key step here was to start considering special pairings, chosen to give a reduced set of possible sums. Once we’ve had this idea, it makes sense to consider other different special pairings. The reason we got a small set of possible sums is that there’s lots of overlap. We can achieve lots of overlap by looking at the difference between elements in a pair, and making as many of these the same as possible. For, consider pairs (a,a+d), (b,b+d). Then it’s the same to take a and b+d as to take a+d and b, so we get the same sums in lots of different ways.

The other way to have as many differences the same as possible is to go for (1,m+1), (2,m+2), … , (m,2m). Conveniently, we can parameterise the sums now because at each choice, we decide whether to add an extra m or not, so the sum must be 1+2+…+m, plus some multiple of m. So we can defeat Boris, except when n is \binom{m}{2}+km.

This is a good point to stop because what followed was basically book-keeping. We only have to consider a couple of specific cases when m is odd, and one when m is even, that happen not to fall into either of the categories we can now deal with. It wasn’t too hard to corrupt the examples we already have to deal with these.

The key here was responding to initial failure by trying to find any control at all over n. Perhaps given enough time I would have started trying special pairings? Equally, I might have tried small examples, which would not really have been hugely helpful for this question. In any case, trying to eliminate very small or very large n luckily worked well, as a) I didn’t need to use the word ‘very’ twice in the end; and b) the idea of looking at choices of pairings to minimise the number of sums quickly gave other useful deductions.

I also really enjoyed Question 3, though was suspicious that I’d used a bound a great deal weaker than one in the question. Along the way, I was trying something confusing and not especially useful that led me into some interesting theory about Latin squares, which I might write something about later in the week.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s