# Symmedians and Balkan MO 2017 Q2

While I was away, I wrote about my latest approach to teaching geometry at olympiad camps. This post will end up being about Q2 from the Balkan MO which took place yesterday in Macedonia, but first there is quite a long prelude. My solution, and probably many solutions, to this problem made use of a standard configuration in triangle geometry, namely the symmedian. I want to introduce the configuration, give some simpler examples in practice, and along the way talk about my slightly patched-together philosophy about the merits of practising Euclidean geometry.

The symmedian

Draw a triangle ABC, with A at the top of the page, and extend the rays AB and AC. The median is the line from A through M, the midpoint of BC. Now take points D and E on AB and AC respectively. The following properties are equivalent:

• DE is parallel to BC;
• triangle ADE is similar to triangle ABC;
• the median of ABC passes through the midpoint of DE, and thus is also the median of ADE.

I think it’s a little awkward to prove either of the first two from the third – ratios of areas works – but the rest of the equivalences are straightforward. Later I’m going to talk about the difference between an exercise and a problem. These are all, at best, exercises.

Now take B’ on the ray AC, and C’ on the ray AB such that triangle AB’C’ is similar to triangle ABC. One way to achieve this is to take B’ and C’ to be the reflections in the angle bisector of A of B and C respectively (so then AB’=AB and AC’=AC). We say the line B’C’ is antiparallel to BC, as is any other line DE parallel to B’C’. (Probably this should say ‘with respect to triangle ABC’ or similar, but the context here is very clear, and I want this to seem natural rather than opaque.) Note that DE is an antiparallel line iff BCED is a cyclic quadrilateral. We should remember that, as cyclic quadrilaterals are the signposts for progress in both exercises and problems.

The median of triangle AB’C’ obeys the same equivalences as described above, and so bisects any antiparallel segment. We call the median of triangle AB’C’ the symmedian of triangle ABC. Using the first set of equivalences, the symmedian of triangle ABC bisects any line antiparallel to BC. Furthermore, by construction, the symmedian is the image of the median of ABC under reflection in the bisector of the angle at A. We sometimes say that the symmedian is the isogonal conjugate of the median.

That’s my definition. Note that there was essentially one definition then a couple of easy equivalent definitions. At no point again will I discuss the equivalence of these definitions – we have to take that for granted if we want to get on to more interesting things.

Intersection of tangents + concurrency

Now, in triangle ABC, draw the tangents to the circumcircle at B and C. These meet at P. It turns out that AP is the symmedian. This could have been our definition of a symmedian, but it wasn’t, so let’s quickly prove this.

Trigonometric arguments are very accessible, but I’ll give a Euclidean argument. Draw the antiparallel DE through P, as shown. Our task is to show that EP=PD. At this point, I would again say that this is an exercise.

We colour the angle ABC in green. Two angles around point C share this measure by the alternate segment theorem. The angle at E shares this measure because DE is antiparallel. Therefore CPE is isosceles, and so EP=CP. But CP=BP, so by applying the same argument for the orange angles, we get EP=CP=BP=DP as required.

Pause to regroup. Proving this wasn’t hard, but it was perhaps surprising. If this was all new to you, and I told you to consider the reflection of the median in the angle bisector, you probably wouldn’t instantly exclaim “it goes through the tangent intersection!” So this is a useful piece of knowledge to have gained, in case we ever have to work with the intersection of two tangents like this. Maybe it won’t be useful, but maybe it will. Maybe the statement itself won’t but some extra insights from the proof will be useful, like the fact that we actually showed P is the centre of the circle BCED, and thus angles ECD=EBD=90.

A second property is that in a triangle ABC, the symmedian from A, the symmedian from B and the symmedian from C intersection at, naturally, the symmedian point, which is usually denoted K. This comes from the fact that each symmedian is the isogonal conjugate of the respective median, and the medians are known to concur at the centroid. I’m not going to get into this now.

Configurations – an example

Here’s a problem. Take an isosceles trapezium ABCD as shown (ie throughout I don’t want to worry about alternative diagrams).

Let M be the midpoint of AD, and let E be the point on CM such that angle DBM = EBA. Prove that ABCDE is cyclic.

Well, certainly ABCD is cyclic. So we just need to show E also lies on that circle. And we have two equal angles, but they aren’t in the right place to conclude this immediately. However, we have angle MCA = DBM = EBA, so ABCE is cyclic, and the result follows.

Why is angle MCA = DBM? Well, the isosceles trapezium has an axis of (reflective) symmetry, and MCA is the is image of DBM under that reflection. Simple. If we wanted to do it with congruent triangles, this would all be a bit more laborious. First have to show BD=AC using one set of congruent triangles, then CM=BM using another, finally finishing using DM=MA. This is much less interesting. The symmetry of the configuration is a higher-level observation which could be proved from the axioms of geometry if necessary, but gives us more information more quickly. When we use a configuration like the symmedian configuration, we are really doing a higher-again-level version of this.

Anyway, that problem is fine, but it’s not especially difficult.

Consider instead the following problem. (I saw this online, possibly with slightly different notation, a few days ago and can no longer find the link. If anyone can help, I will add the link.)

Let AB be a chord of a circle, with midpoint M, and let the tangents at A and B meet at P. Consider a line through P which meets the circle at C and D in that order. Extend CM to meet the circle again at E. Show DME is isosceles.

Here’s a diagram, though it includes some clues.

I thought this was a fun problem, and for a while I couldn’t do it because despite lots of equal angles and equal lengths, I couldn’t conjure any congruent triangles in the right places, and I didn’t care enough about solving it to get involved in trigonometry. Then came the moment of insight. We have a midpoint, and also the intersection of the tangents. So DP is the symmedian of triangle DAB, and DM is the median. This gives us the two equal orange angles. Cyclicity gives us an extra equal angle at E as well.

Note now that the situation is very very similar to the previous question (after changing some of the labels), only this time we know ACBDE is cyclic, but don’t know that ABDE is an isosceles trapezium. If ABDE is an isosceles trapezium, we are clearly finished, as then by the same symmetry argument, EM=DM. This direction is probably harder to prove than the direction of the previous problem. Again there are a couple of ways to proceed, but one way is to consider the point E’ such that ABDE’ is an isosceles trapezium, and arguing that E’ lies on the given circle, and the circle through BME, and thus must coincide with E, in a reverse reconstruction argument.

Anyway, this is all slightly a matter of taste, but I would say the second problem is much much more fun than the first problem, even though the second part of the solution is basically the first problem but in a more awkward direction. If you’re going to do Euclidean geometry at all (very much another question), I think you should do questions like the second question wherever possible. And the enjoyable ‘aha moment’ came from knowing about the symmedian configuration. Is it really plausible that you’d look at the original diagram (without the dashed orange lines) and think of the antiparallel to AB in triangle DAB through point P? Probably not. So knowing about the configuration gave access to the good bit of a nice problem.

‘Philosophy of this sort of thing’

If the goal was to solve the second problem in a competition, knowing about the symmedian configuration would be a big advantage. I’ve tried to justify a related alternative view that knowing about the configuration gave access to an enjoyable problem. The question is how many configurations to study, and how hard to study them?

We tend not to think of cyclic quadrilaterals as a special configuration, but that is what they are. We derived circle theorems from the definition of a circle so that we don’t always have to mark on the centre, every single time we have a cyclic quadrilateral. So becoming familiar with a few more is not unreasonable. In particular, there are times when proofs are more important than statements. In research (certainly mine), understanding how various proofs work is the most important aspect, for when you try to extend them or specialise. And in lots of competition problems, the interesting bit is normally finding the argument rather than basking in wonder at the statement (though sometimes the latter is true too!).

To digress briefly. In bridge, I don’t know enough non-obvious motifs in bidding or gameplay to play interesting hands well. I trust that if I thought about some of it very very carefully, I could come up with some of them, especially in gameplay, but not in real time. And it is supposed to be fun right?! Concentrating very very hard to achieve a basic level of competence is not so enjoyable, especially if it’s supposed to be a break from regular work. The end result of this is that I don’t play bridge, which is a shame, because I think the hurdles between where I am currently and a state where I enjoy playing bridge are quite low. If I knew I was going to play bridge regularly, a bit of time reading about conventions would be time well spent. And obviously this applies equally in pursuits which aren’t directly intellectual. Occasionally practising specific skills in isolation broadens overall enjoyment in sport, music, and probably everything. As anyone who’s played in an orchestra knows, there are standard patterns that come up all the time. If you practise these occasionally, you get to a stage where you don’t really need to concentrate that hard in the final movement of Beethoven 5, and instead can listen to the horns, make funny faces at the first violins, and save your mental energy for the handful of non-standard tricky bits. And of course, then move on to more demanding repertoire, where maybe the violas actually get a tune.

This is highly subjective, but my view is that in all these examples are broadly similar to configurations in geometry, and in all of them a little goes a long way.

How? In lots of the geometry configurations you might meet in, for example, a short session at a training camp, most of the conclusions about the configurations have proofs which, like in our symmedian case, are simple exercises. Once you’ve got over some low initial experience hurdles, you have to trust that you can normally solve any simple exercise if required. If you can’t, moving on and returning later, or asking for help is a good policy. The proof shown above that symmedians pass through tangent meet points (and especially a trigonometric alternative) really isn’t interesting enough to spend hours trying to find it. The statements themselves are more useful and interesting here. And it can often be summarised quite quickly: “symmedians are the isogonal conjugates of the medians, so they bisect antiparallels, meet at K, and pass through the alternate tangent meeting points.” Probably having a picture in your mind is even simpler.

There’s a separate question of whether this is worthwhile. I think solving geometry problems occasionally is quite fun, so I guess yes I do think it is worthwhile, but I understand others might not. And if you want to win maths competitions, in the current framework you have to solve geometry problems under time pressure. But from an educational point of view, even though the statements themselves have no real modern research value, I think a) that’s quite a high bar to set, and there’s no a priori reason why they should – >99.9% of things anyone encounters before university have no value to modern research maths; b) in terms of knowledge acquisition, it’s similar in spirit to lots of things that are relevant to later study. I don’t have to solve PDEs very often, but when I do, I hope they are equivalent or similar to one of the small collection of PDEs I do know how to solve. If I worked more with PDEs, the size of this collection would grow naturally, after some initial struggles, and might eventually match my collection of techniques for showing scaling limits of random processes, which is something I need to use often, so the collection is much larger. Maybe that similarity isn’t enough justification by itself, but I think it does mean it can’t be written off as educationally valueless.

Balkan MO 2017 Question Two

An acute angled triangle ABC is given, with AB<AC, and $\omega$ is its circumcircle. The tangents $t_B,t_C$ at B,C respectively meet at L. The line through B parallel to AC meets $t_C$ at D. The line through C parallel to AB meets $t_B$ at E. The circumcircle of triangle BCD meets AC internally at T. The circumcircle of triangle BCE meets AB extended at S. Prove that ST, BC and AL are concurrent.

Ok, so why have I already written 1500 words about symmedians as a prelude to this problem? Because AL is a symmedian. This was my first observation. This observation is then a route into non-Euclidean solutions. It means, for example, that you can describe the point of concurrency fairly explicitly with reference to triangle ABC. If you wish, you can then proceed using areal coordinates. One member of the UK team, whom I know is perfectly capable of finding a synthetic solution, did this. And why not? It’s a competition, and if you can see a method that will definitely work, and definitely take 45 minutes (or whatever) then that’s good.

I was taking a break from work in my office, and had no interest in spending the time evaluating determinants because that isn’t enjoyable at any level, so I focused on the geometry.

I think there’s a good moral from the diagram above, which is the first moderately correct one I drew. I often emphasise that drawing an accurate diagram is important, as it increases the chance that you’ll spot key properties. In this case though, where you’re trying to examine a known configuration, I think it’s more important what you choose to include on your diagram, than how accurately you draw it. (In a moment, we’ll see why it definitely wasn’t very accurate.)

In particular, what’s not on the diagram? E is not on the diagram, and S got added later (as did the equal length signs in TB and CS, which rather spoil what’s about to happen). My first diagram was wildly incorrect, but it also suggested to me that the line ST was hard to characterise, and that I should start by deducing as much as possible about S and T by themselves. So by symmetry, probably it was enough just to deduce as much as possible about T.

Label the angles of triangle ABC as <A, <B, And therefore TB is an antiparallel in triangle ABC. (Note this doesn’t look antiparallel on my diagram at all, but as I said, this didn’t really matter.) Obviously you then guess that CS is also an antiparallel, and on a different diagram I checked this, for essentially the same reasons.

We haven’t yet made any use of the symmedian, but this is clearly where it’ll be useful. Note that if we didn’t know about everything in the prelude, we might well have deduced all of this, but we might not have thought to prove that AL bisects TB unless we’d drawn a very accurate diagram.

At this point, we have to trust that we have enough information to delete most of the diagram, leaving just {A,B,C,S,T} and the line AL. There are a few ways to finish, including similar triangles if you try very hard or trigonometry if you do it right, but again knowledge of some standard configurations is useful. Probably the quickest way is to use Ceva’s theorem in triangle ACS. You can also use Menelaus’ theorem in ABC, so long as you know a little bit about where the symmedian meets the opposite side.

An alternative is the following. We have a complete quadrilateral here, namely BTCS, and the intersection of all its diagonals. One is A, one is the proposed point of concurrency, and one is the point at infinity, since TB || CS. You can chase that, but I found it more clear to let P be the intersection of ST and BC (which we want to prove lies on AL), then look at the complete quadrilateral ATPB. Then AT and BP meet at C, and AB and TP meet at S. So if we look at where the diagonals of ATPB meet the line CS, we have a harmonic range.

If I’d wanted, I could instead have written the prelude about harmonic ranges, but I had fewer ideas how to set these up in a slick Euclidean way. Also, it feels better to talk about the start, rather than the end of a proof, especially when there were alternative endings. Anyway, a harmonic range is a collection of two pairs of points on a line (A, B; C, D), satisfying the following ratio of directed lengths:

$\frac{AC}{BC} = -\frac{AD}{BD}.$

A classic example is when D is the point at infinity, the RHS is -1, and so C is the midpoint of AB. Being happy about using the point at infinity is a property of projective geometry, of which this is a good first example. Anyway, returning to the problem, we are looking at where the diagonals of ATPB meet line CS, and this pair of points forms a harmonic range with (C,S). TB meets CS at the point at infinity, and so AP meets CS at the midpoint of CS. But from the symmedian configuration, AL bisects CS, so AP and AL are in fact the same line, and so P lies on AL as required.

I think was a brilliant example of when knowing a bit of theory is enjoyable. It wasn’t at all obvious initially how to use the symmedian property, but then the observation that TB is antiparallel felt like a satisfying breakthrough, but didn’t immediately kill the problem.

# Balkan MO 2017 – Qs 1, 3 and 4

The UK is normally invited to participate as a guest team at the Balkan Mathematical Olympiad, an annual competition between eleven countries from South-Eastern Europe. I got to take part in Rhodes almost exactly ten years ago, and this year the competition was held in Ohrid, in Macedonia. There’s one paper, comprising four questions, normally one from each of the agreed olympiad topic areas, with 4.5 hours for students to address them. The contest was sat this morning, and I’m going to say quite a bit about the geometric Q2, and a little bit about Qs 1 and 3 also. In all cases, this discussion will include most of a solution, with some commentary, so don’t read these if you are planning to try the problems yourself.

I’m not saying anything about Q4, because I haven’t solved it. (Edit: I have solved it now, so will postpone Q2 until later today.)

Question One

Find all ordered pairs of positive integers (x,y) such that

$x^3+y^3=x^2+42xy+y^2.$

The first thought is that if either of x or y is ‘large’, then the LHS is bigger than the RHS, and so equality can’t hold. That is, there are only finitely many solutions. The smallest possible value of y is, naturally, 1, and substituting y=1 is convenient as then $y^2=y^3$, and it’s straightforward to derive $x=7$ as a solution.

Regarding the non-existence of large solutions, you can make this precise by factorising the LHS as

$(x+y)(x^2-xy+y^2) = x^2+42xy+y^2.$

There are 44 terms of degree two on the RHS, and one term of degree in the second bracket on the LHS. With a bit of AM-GM, you can see then that if $x+y>44$, you get a contradiction, as the LHS will be greater than the RHS. But that’s still a lot of possibilities to check.

It struck me that I could find ways to reduce the burden by reducing modulo various primes. 2, 3 and 7 all divide 42, and furthermore cubes are nice modulo 7 and squares are nice modulo 3, so maybe that would bring the number of possibilities down. But my instinct was that this wasn’t the right way to use the fact that we were solving over positive integers.

The second bracket in the factorisation looks enough like the RHS, that it’s worth exploring. If we move $x^2-xy+y^2$ from the right to the left, we get

$(x+y-1)(x^2-xy+y^2) = 43xy.$ (1.1)

Now it suddenly does look useful that we are solving over positive integers, because 43 is a prime, so has to appear as a factor somewhere on the LHS. But it’s generally quite restrictive that $x^2-xy+y^2 | 43xy$. This definitely looks like something that won’t hold often. If x and y are coprime, then certainly $x^2-xy+y^2$ and $y$ are coprime also. But actually if x and y have a non-trivial common factor d, we can divide both sides by $d^2$, and it still holds. Let’s write

$x=dm,\quad y=dn,\quad\text{where }d=\mathrm{gcd}(x,y).$

Then $m^2 -mn+n^2$ really does divide 43, since it is coprime to both m and n. This is now very restrictive indeed, since it requires that $m^2-mn+n^2$ be equal to 1 or 43. A square-sandwiching argument gives $m^2-mn+n^2=1$ iff $m=n=1$. 43 requires a little bit more work, with (at least as I did it) a few cases to check by hand, but again only has one solution, namely $m=7, n=1$ and vice versa.

We now need to add the common divisor d back into the mix. In the first case, (1.1) reduces to $(2d-1)=43$, which gives $(x,y)=(22,22)$. In the second case, after cancelling a couple of factors, (1.1) reduces to $(8d-1)=7$, from which $(x,y)=(7,1),(1,7)$ emerges, and these must be all the solutions.

The moral here seemed to be that divisibility was a stronger tool than case-reduction. But that was just this question. There are other examples where case-reduction is probably more useful than chasing divisibility.

Question Three

Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that

$n+f(m) \,\big|\, f(n)+nf(m)$

for all $m,n\in\mathbb{N}$.

What would be useful here? There are two variables, and a function. It would be useful if we could reduce the number of variables, or the number of occurences of f. We can reduce the number of variables by taking m=n, to get

$n+f(n) \,\big|\, f(n) [1+n].$ (3.1)

From this, we might observe that $f(n)\equiv 1$ is a solution. Of course we could analyse this much more, but this doesn’t look like a 10/10 insight, so I tried other things first.

In general, the statement that $a\,|\,b$ also tells us that $a\,|\, b-ka$. That is, we can subtract arbitrary multiples of the divisor, and the result is still true. A recurring trope is that the original b is elegant, but an adjusted b-ka is useful. I don’t think we can do the latter, but by subtracting $n^2 +nf(m)$ from the problem statement, we get

$n+f(m) \,\big|\, n^2-f(n).$ (3.2)

There’s now no m on the RHS, but this relation has to hold for all m. One option is that $f(n)=n^2$ everywhere, then what we’ve deduced always holds since the RHS is zero. But if there’s a value of n for which $f(n)\ne n^2$, then (3.2) is a very useful statement. From now on, we assume this. Because then as we fix n and vary m, we need $n+f(m)$ to remain a divisor of the RHS, which is fixed, and so has finitely many divisors. So $f(m)$ takes only finitely many values, and in particular is bounded.

This ties to the observation that $f\equiv 1$ is a solution, which we made around (3.1), so let’s revisit that: (Note, there might be more elegant ways to finish from here, but this is what I did. Also note, n is no longer fixed as in previous paragraph.)

$n+f(n) \,\big|\, f(n) [1+n].$ (3.1)

Just to avoid confusion between the function itself, and one of the finite collection of values it might take, let’s say b is a value taken by f. So there are values of n for which

$n+b \,\big|\, b(1+n).$

By thinking about linear equations, you might be able to convince yourself that there are only finitely many solutions (in n) to this relation. There are certainly only finitely many solutions where LHS=RHS (well, at most one solution), and only finitely many where 2xLHS=RHS etc etc. But why do something complicated, when we can actually repeat the trick from the beginning, and subtract $b(n+b)$, to obtain

$n+b \,\big|\, b^2-b.$

For similar reasons to before, this is a great deduction, because it means if $b\ne 1$, then the RHS is positive, which means only finitely many n can satisfy this relation. Remember we’re trying to show that no n can satisfy this relation if $b\ne 1$, so this is definitely massive progress!

If any of what’s already happened looked like magic, I hope we can buy into the idea that subtracting multiples of the divisor from the RHS is the only tool we used, and that making the RHS fixed gives a lot of information about the LHS as the free variable varies. The final step is not magic either. We know that f is eventually 1. If you prefer “for large enough n, $f(n)=1$,” since all other values appear only finitely often. I could write this with quantifiers, but I don’t want to, because that makes it seem more complicated than it is. We genuinely don’t care when the last non-1 value appears.

Anyway, since we’ve deduced this, we absolutely have to substitute this into something we already have. Why not the original problem statement? Fix m, then for all large enough n

$n+f(m) \,\big|\, 1+nf(m).$ (3.3)

To emphasise, (3.3) has to hold for all large enough n. Is it possible that f(m)=2? Again, it’s easy to convince yourself not. But, yet again, why not use the approach we’ve used so profitably before to clear the RHS? In fact, we already did this, and called it (3.2), and we can make that work [3.4], but in this setting, because f(m) is fixed and we’re working with variable large n, it’s better to eliminate n, to get

$n+f(m)\,\big|\, f(m)^2-1,$

again for all large enough n. By the same size argument as before, this is totally impossible unless f(m)=1. Which means that in fact $f(m)=1$ for all m. Remember ages ago we assumed that f(n) was not $n^2$ everywhere, so this gives our two solutions: $f(n)=1,\, f(n)=n^2$.

Moral: choosing carefully which expression to work with can make life much more interesting later. Eliminating as many variables or difficult things from one side is a good choice. Playing with small values can help you understand the problem, but here you need to think about soft properties of the expression, in particular what happens when you take one variable large while holding another fixed.

[3.4] – if you do use the original approach, you get $n^2-1$ on the RHS. There’s then the temptation to kill the divisibility by taking n to be the integer in the middle of a large twin prime pair. Unfortunately, the existence of such an n is still just a conjecture

Question Four

(Statement copied from Art of Problem Solving. I’m unsure whether this is the exact wording given to the students in the contest.)

On a circular table sit n>2 students. First, each student has just one candy. At each step, each student chooses one of the following actions:

(A) Gives a candy to the student sitting on his left or to the student sitting on his right.

(B) Separates all its candies in two, possibly empty, sets and gives one set to the student sitting on his left and the other to the student sitting on his right.

At each step, students perform the actions they have chosen at the same time. A distribution of candy is called legitimate if it can occur after a finite number of steps.
Find the number of legitimate distributions.

My moral for this question is this: I’m glad I thought about this on the bus first. What I found hardest here was getting the right answer. My initial thoughts:

• Do I know how to calculate the total number of possibilities, irrespective of the algorithm? Fortunately yes I do. Marbles-in-urns = barriers between marbles on a line (maybe add one extra marble per urn first). [4.1]
• What happens if you just use technique a)? Well first you can get into trouble because what happens if you have zero sweets? But fine, let’s temporarily say you can have a negative number of sweets. If n is even, then there’s a clear parity situation developing, as if you colour the children red and blue alternately, at every stage you have n/2 sweets moving from red children to blue and vice versa, so actually the total number of sweets among the red children is constant through the process.
• What happens if you just use technique b)? This felt much more promising.
• Can you get all the sweets to one child? I considered looking at the child directly opposite (or almost-directly opposite) and ‘sweeping’ all the sweets away from them. It felt like this would work, except if for some parity reason we couldn’t prevent the final child having one (or more, but probably exactly one) sweets at the crucial moment when all the other sweets got passed to him.

Then I got home, and with some paper, I felt I could do all possibilities with n=5, and all but a few when n=6. My conjecture was that all are possible with n odd, and all are possible with n even, except those when none of the red kids or none of the kids get a sweet. I tried n=8, and there were a few more that I couldn’t construct, but this felt like my failure to be a computer rather than a big problem. Again there’s a trade-off between confirming your answer, and trying to prove it.

Claim: If n is even, you can’t achieve the configurations where either the red children or the blue children have no sweets.

Proof: Suppose you can. That means there’s a first time that all the sweets were on one colour. Call this time T. Without loss of generality, all the sweets are on red at T. Where could the sweets have been at time T-1? I claim they must all have been on blue, which contradicts minimality. Why? Because if at least one red child had at least one sweet, they must have passed at least one sweet to a blue neighbour.

Now it remains to give a construction for all other cases. In the end, my proof has two stages:

Step One: Given a configuration, in two steps, you can move a candy two places to the right, leaving everything else unchanged.

This is enough to settle the n odd case. For the even case, we need an extra step, which really corresponds to an initial phase of the construction.

Step Two: We can make some version of the ‘sweeping’ move precise, to end up in some configuration where the red number of children have any number of sweets except 0 or n.

Step one is not so hard. Realising that step one would be a useful tool to have was probably the one moment where I shifted from feeling like I hadn’t got into the problem to feeling that I’d mostly finished it. As ever in constructions, working out how to do a small local adjustment, which you plan to do lots of times to get a global effect, is great. (Think of how you solve a Rubik’s cube for example.)

Step two is notationally fiddly, and I would think very carefully before writing it up. In the end I didn’t use the sweeping move. Instead, with the observation that you can take an adjacent pair and continually swap their sweets it’s possible to set up an induction.

Actual morals: Observing the possibility to make a small change in a couple of moves (Step one above) was crucial. My original moral does still hold slightly. Writing lots of things down didn’t make life easier, and in the end the ideas on the bus were pretty much everything I needed.

[4.1] – one session to a group of 15 year olds is enough to teach you that the canon is always ‘marbles in urns’ never ‘balls’ nor ‘bags’, let alone both.

# Balkan MO 2016 – UK Team Blog Part Two

This short blog records the UK team at the Balkan Mathematical Olympiad 2016, held in Albania. The first part is here. A more mathematical version of this report, with commentaries on the problems, will appear at the weekend.

Sunday 8th May

Gerry and I are separated by 15km, so we can’t work together until this morning, when I also get a chance to see the UK team at their base in Vore, before they are whisked off to a beach. We now have the chance to work on the geometry together, which includes two sensible trigonometric arguments, and a nice synthetic proof only with reference to an inverted diagram. We quickly decide that this isn’t a major error, and aim to schedule our meetings as quickly as possible.

The coordinators for questions 3 and 4 seem very relaxed, and we quickly get exactly what we deserve, plus a spurious extra point for Michael because he used the phrase ‘taxicab metric’ in his rough. Thomas’s trigonometry, especially its bold claim that ‘by geometry, there are no other solutions’ when an expression becomes non-invertible, seems not to have been read entirely critically. Michael’s inverted diagram is briefly a point of controversy, but we are able to get 9 rather than the 7 which was proposed, absurdly for an argument that was elegant and entirely valid in the correct diagram up to directed angles. Question 1 is again rapid, as the coordinators say that the standard of writing is so clear that they are happy to ignore two small omissions. It transpires after discussion with, among others, the Italian leader, that such generosity may have been extended to some totally incorrect solutions, but in the final analysis, everything was fair.

So we are all sorted around 11.30am with a team score of 152, a new high for the UK at this competition. This is not necessarily a meaningful or consistent metric, but with scores of {20,21,22,29,30,30} everyone has solved at least two problems, and the three marks lost were more a matter of luck than sloppiness. Irrespective of the colours of medals this generates, Gerry and I are very pleased. We find a table in the sun, and I return to my introduction while we await progress from the other countries’ coordinations, and our students’ return.

This does not happen rapidly, so I climb the hill behind the hotel up a narrow track. A small boy is standing around selling various animals. Apparently one buys rabbits by the bucket and puppies by the barrel in Albania. Many chickens cross the road, but key questions remain unanswered. From the summit, there is a panorama across the whole Tirana area, and the ring of mountains encircling us. One can also see flocks of swifts, which are very similar to swallows, only about twice as large, and their presence in any volume makes no comment on the arrival of the British summer.

The students return mid-afternoon, and are pleased with their scores. Jamie explains their protracted misadventure with a camp bed in their ‘suite’ of rooms, and Jacob shows off his recent acquisitions: a felt hat, and a t-shirt outlining the border of a ‘greater Albania’. The fact that they didn’t have his size seems not to have been a deterrent, but hopefully the snug fit will discourage him from sporting it in Montenegro, which might lead to a political incident.

Hours pass and time starts to hang heavily as dinner approaches, with no sign of the concluding jury meeting. Finally, we convene at 10pm to decide the boundaries. The chair of the jury reads the regulations, and implements them literally. There’s a clump of contestants with three full solutions, so the boundaries are unusually compressed at 17, 30 and 32. A shame for Thomas on 29, but these things happen, and three full solutions minus a treatment of the constant case for a polynomial is still something to be happy about. Overall, 4 bronze and 2 silvers is a pleasing UK spread, and only the second time we have earned a full set of medals at this competition. The leaders are rushed back to Tirana, but hopefully the teams have enough energy left for celebration!

Monday 9th May

Today is the tutti excursion, but on the way the leaders stop at the city hall to meet the mayor of Tirana. He is new to the office, reminiscent of a young Marlon Brando, and has a bone-crushing handshake. He improvises an eloquent address, and negotiates with flair the awkward silence which follows when the floor is opened for speeches in response. In the end, the Saudi leader and I both say some words of thanks on behalf of the guest nations, and soon we are back on our way south towards Greece. The Albanian motorway is smooth and modern, but we find ourselves competing for space with communist-era windowless buses and the occasional pedestrian leading by hand a single cow.

Our destination is Berat, known as the city of a thousand windows, and home to a hilltop castle complex from which none of the thousand windows are visible. The old orthodox cathedral is now a museum of icons and other religious art, and we get a remarkably interesting tour from a local guide. The highlight is a mosaic representation of the Julian calendar, and we discuss whether the symmetries built into the construction would be more conducive to a geometry or a combinatorics question.

Back in Tirana, we reconverge at the closing ceremony, held in the theatre at a local university for the arts. While we wait, there is a photo montage, featuring every possible Powerpoint transition effect, in which Jacob and his non-standard hat usage makes a cameo appearance. We are then treated to a speech by Joszef Pelikan, who wows the crowd by switching effortlessly into Albanian, and some highly accomplished dancing, featuring both classical ballet and traditional local styles.

The ministry have taken over some aspects of the organisation here, and there is mild chaos when it’s medal time. The leaders are called upon to dispense the prizes, though the UK is snubbed for alphabetic reasons. The end result is that forty students are on stage with neither medals nor any instructions to leave. Eventually it vaguely resolves, though it is a shame there is no recognition for the two contestants (from Serbia and Romania) who solved the final problem and thus achieved a hugely impressive perfect score.

As you can see, the UK team look extremely pleased with themselves, and Michael’s strategy to get to know all the other teams through the medium of the selfie is a storming success. A very large number of photographs are taken, and Thomas is not hiding in at least one of them. The closing dinner is back in Vore, which is very convivial and involves many stuffed vine leaves. Rosie suggests we retire somewhere quieter, but by the time we establish how to leave, she has instead dragged the rest of the team onto the dancefloor, where near-universal ignorance of the step pattern is no obstacle to enjoying the folk music. The DJ slowly transitions towards the more typical Year 11 disco playlist, and Jill feels ‘Hips don’t lie’ is a cue for the adults to leave.

Tuesday 10th May

Our flight leaves at 9pm so we have many hours to fill. It turns out that we have one of the shortest journeys. The Serbians have caught a bus at 3am, while the Cypriots are facing stopovers in Vienna and Paris! It is another beautiful day, so we hire a small van to take us to Lezhe, the hometown of our guide Sebastian, and the nearby beach at Shengjin.

We walk to the tip of the breakwater, and watch some fishermen hard at work, though apparently today is a lean catch. The buildings along the beachfront are a sequence of pastel colours, backing onto another sheer mountain, and we could easily be in Liguria. Jamie is revising for his A2-level physics and chemistry exams, which start at 9am tomorrow morning, and the rest of the team are trying to complete the shortlist of problems from IMO 2007. They progress through the questions in the sand, with a brief diversion as Jacob catches a crab in the shallows with his bare hands for no apparent reason.

After a fish-heavy lunch, we return to Vore, and I’ve run out of subsubsections to amend, so propose another walk into the hills. The animals we meet this time appear not to be for sale. Some scrabbling in the undergrowth is sadly not the longed-for bear or wolf. Many of its colleagues are loitering on the local saddle point, and our Albanian companion Elvis describes them as ‘sons of sheep’, while Renzhi confidently identifies them as cows. They are goats. There is a small but vigorous goatdog, who reacts with extreme displeasure to our attempt to climb to one viewpoint, so Gerry leads us off in another direction up the local version of the north face of the Eiger. We do emerge on the other side, dustier but with plenty of heavily silhouetted photographs.

Then the hour of departure, and time to say goodbye to the organisers, especially Adrian, Matilda and Enkel who have made everything happen, and in a wonderful spirit; and our guide Sebastian, who has set an impossibly high bar for any others to aspire to. We wish him well in his own exams, which start on Thursday! Albania has left a strong positive impression, and it will sit high on my list of places to explore more in the future, hopefully before too many others discover it. The airport affords the chance to spend the final Leke on brandy and figurines of Mother Teresa, and the flight the chance to finish problem N5, and discuss our geometry training regime with Rosie and Jacob as they work through some areal exercises.

2am is not a thrilling time to be arriving in Oxford, and 2.30am is not a thrilling time to be picking up solutions to past papers (and an even less thrilling time to discover that no such solutions have been handed in). But this has been a really enjoyable competition, at which the UK team were delightful company, and performed both strongly and stylishly at the competition, so it is all more than justified. We meet again at half-term in three weeks’ time to select the UK team for the IMO in Hong Kong, and hopefully explore some more interesting mathematics!

# Balkan MO 2016 – UK Team Blog Part One

The Balkan Mathematical Olympiad is a competition for high school students from eleven countries in Eastern Europe, hosting on an annually rotating basis. For the 33rd edition it was Albania’s turn to host, and the UK was invited to participate as a guest nation.

A report with more mathematics, less frivolity and minimal chronological monotonicity can be found [SHORTLY].

Wednesday 4th May

I put the finishing touches to another draft of another chapter of my thesis, cajole the Statistics Department printer into issueing eighteen tickets, six consent forms and a terrifyingly comprehensive insurance policy, and head for Gatwick to meet the team. The UK imposes a policy that we will only take anyone to the Balkan MO once, so as to maximise the number of students who get to experience an international competition. The faces aren’t entirely new though – all six attended our winter programme in Hungary over New Year and the recent selection camp in Cambridge. They are showing the right level of excitement: the level that suggests they will enjoy the competition but won’t lose their passports in the next thirty minutes. As a point of trivia, this UK team are all sixth-formers, which, after checking not very carefully, doesn’t seem to have happened for any UK team for a long time, possibly not since 2008 when I was a contestant.

As of February this year, it’s now possible to fly direct to Albania on British Airways, which is a major improvement on the alternatives featuring either a seven-hour layover in Rome, or a nailbiting twenty-five minute interchange in Vienna. A drawback of the diary format is the challenging requirement to say interesting things about flights. In this instance, my principal challenge is to find some leftover room in my seat, as my neighbour’s physique has the same level of respect for the constraining power of armrests as the sea for the battlements of a child’s sandcastle. Across the aisle, Renzhi and Thomas face the twin challenges of a sheet of functional equations I’ve collated, and the well-meaning attempts of cabin attendants and their own neighbours to discuss said functional equations.

Later, over dinner next to Mother Teresa Airport in Tirana, we discuss the role of mathematics in recent films. Based on a sample size of at most two, we decide that The Man who Knew Infinity’ is slightly better than The Imitation Game’, partly because the former had fewer mathematical errors, or at least mispronunciations, about which Gerry feels strongly.

Thursday 5th May

The drawback of the new BA route is that it doesn’t run on Thursdays, so we are actually almost a full day early. Morning brings a cloudless summer’s day, and views of the imposing mountains that encircle Tirana. The students have assembled a healthy collection of past problems that they are keen to attempt as practice, and it seems natural to attempt this in a slightly more interesting place than the hotel lobby for at least some of the day.

Our guide Sebastian waves his Blackberry and rapidly conjures up an excursion to Mount Dajti, a small resort two-thirds of the way up a small mountain accessed from suburban Tirana via cable car. We follow a sign that seems to point to the summit, but the trail has distinctly horizontal ambitions. We are rewarded nonetheless with some pleasant views over the mountain range down past enclosed cerulean lakes down to the Adriatic, and even beyond to Italy.

Gerry is concerned about whether our return route is actually taking us where we want to go. He is right to be concerned, but not for that reason. It is the correct direction, but through a military base. Despite this, we make it back to the top of the cable car in the correct number of pieces. There’s the chance to alter this with some diverting activities, namely horse-riding and target-shooting. The targets are balloons, mounted on a clothes line at roughly horse-head-height. We move along.

Several years of attending maths competitions has increased both my ability to solve problems in Euclidean geometry, and also my suspicion of anything with a title like ‘Museum of National History’. I’m going to have to adjust the latter, because the recently-opened Albanian version, called BunkART, was actually excellent. It was housed in the five-level 108-room bunker built into the mountain to protect Enver Hoxha from nuclear attack. The rooms detailed the recent, fragmented history of the country, and were interspersed with aggressively modern art installations. In one basement which used to house the isotope filters, we were treated to a video loop of blood dripping onto barbed wire set to Mahler’s 5th Symphony.

While some regional competitions have adopted the ‘benign dictatorship’ approach to choosing the problems, the Balkan MO still has a problem selection phase. So I separate from the students and spend a pleasant few hours playing around with some of the proposals in the rooftop lounge of the leaders’ hotel on a balmy night in central Tirana.

Friday 6th May

The task for today is to construct a paper. A committee has selected a shortlist of problems, and we have to narrow this down to four, with one from each topic area, with an appropriate range of difficulty. The shortlist definitely contains some gems and some anti-gems, and more thoughts about these can be found in the official report.

The only dramatic moment comes when the Greek leader flourishes a webpage and an old IMO shortlist problem, which does indeed contain a proposed question as a lemma, and so it is rejected. Partly as a result of this, a medium geometry problem is chosen quickly; and the hard combinatorics shortly after lunch, since everyone likes it, and no-one can propose a better alternative. Selecting the final two problems, from number theory and algebra produces several combinatorial challenges in its own right. A rather complicated, multi-round election takes place (in which the UK, as a guest nation, does not get a say), and the final two problems are chosen, and the paper is complete.

Interestingly, this matches exactly the ideal paper I’d been hoping for last night, but with the middle questions the other way round. I think the UK students will enjoy it, and I’ll be very pleased for anyone from any country who solves the final problem. It’s fascinating to talk to the leaders of Bosnia and Montenegro, who discuss in detail why their respective education systems mean they are confident their students will struggle much more with Q3.

In the middle of the selection process, there was a rapid transfer to the students’ site in Vore, 15km away, to attend a brief opening ceremony. There is a warm speech from the deputy minister for education, some brief dancing, and the parade of teams. The wholesaler had a bargain on quartered polo shirts, so, unlike the UK flag they are carrying, our team are invariant under both reflection and rotation.

I am summoned to be an expert on the usage of English to prepare the final version of the paper. I feel that the problem authors have done an excellent job, and there is little work to do except suggest some extra sentence breaks and delete some appearances of the word ‘the’. Pity then the other leaders who return to the Harry Fultz school to translate and approve all the versions in their respective languages. It’s midnight as a I write this, and no sign of their return…

Saturday 7th May

This is what we’ve all come for, as the contestants are transported into Tirana for the 4.5 hours of the competition paper. They are allowed to ask questions of clarification during the first half hour. Twenty-five minutes pass, and we are untroubled, so we smugly conclude we must have achieved a wording with total clarity. In fact, the exam is starting slightly late, and a mild deluge begins, mostly concerning the definition of ‘injective’. Both the era of UK students asking joke questions and UK students asking genuine questions have passed, so I am left in peace.

Somehow, Enkel Hysnelaj has single-handedly produced LaTeX markschemes for all four problems overnight, and these are discussed at some length, though it’s to his credit that they didn’t require even longer. The leaders and deputies are then wheeled off on an excursion. Our destination is Kruje, famous as the hometown of Skenderbeg, the Albanian national hero, and just before that is Fushe-Kruje, famous as the place where George W. Bush’s watch was stolen during an official visit. On the way up to the castle and museum we pass through a bazaar where there is the opportunity to buy a carpet, a felt hat, or a mug decorated with a picture of Enver Hoxha. I will be sure to drop some hints to the UK students about ideal choices of gift for Gerry.

The scripts will be arriving a bit later, so there’s the chance for a wander around Tirana in the early evening sun. My planned trip to the Museum of Secret Surveillance is sadly foiled since it hasn’t yet been opened, but there are several more statues of Skenderbeg to enjoy. The question of why he wears a goat head on his helmet remains open. Since dinner is a mere two hours after another meat-centric five course lunch, I turn my attention to the UK scripts which have just arrived. I glance at questions 1 and 4 and the latter is mostly bare while the former is pointedly well-written. The same applies to question 3. All of our nagging about clear written work has very much been rewarded here. As a personal bonus, I can therefore spare time for a late dinner. My attempt at ordering a quick snack results in about a kilo of ribs with the ubiquitous lemons, but will hopefully deflate slightly during coordination in the morning.