# Random walks conditioned to stay positive

In this post, I’m going to discuss some of the literature concerning the question of conditioning a simple random walk to lie above a line with fixed gradient. A special case of this situation is conditioning to stay non-negative. Some notation first. Let $(S_n)_{n\ge 0}$ be a random walk with IID increments, with distribution X. Take $\mu$ to be the expectation of these increments, and we’ll assume that the variance $\sigma^2$ is finite, though at times we may need to enforce slightly stronger regularity conditions.

(Although simple symmetric random walk is a good example for asymptotic heuristics, in general we also assume that if the increments are discrete they don’t have parity-based support, or any other arithmetic property that prevents local limit theorems holding.)

We will investigate the probability that $S_n\ge 0$ for n=0,1,…,N, particularly for large N. For ease of notation we write $T=\inf\{n\ge 0\,:\, S_n<0\}$ for the hitting time of the negative half-plane. Thus we are interested in $S_n$ conditioned on T>N, or T=N, mindful that these might not be the same. We will also discuss briefly to what extent we can condition on $T=\infty$.

In the first paragraph, I said that this is a special case of conditioning SRW to lie above a line with fixed gradient. Fortunately, all the content of the general case is contained in the special case. We can repose the question of $S_n$ conditioned to stay above $n\alpha$ until step N by the question of $S_n-n\alpha$ (which, naturally, has drift $\mu-\alpha$) conditioned to stay non-negative until step N, by a direct coupling.

Applications

Simple random walk is a perfectly interesting object to study in its own right, and this is a perfectly natural question to ask about it. But lots of probabilistic models can be studied via naturally embedded SRWs, and it’s worth pointing out a couple of applications to other probabilistic settings (one of which is the reason I was investigating this literature).

In many circumstances, we can desribe random trees and random graphs by an embedded random walk, such as an exploration process, as described in several posts during my PhD, such as here and here. The exploration process of a Galton-Watson branching tree is a particularly good example, since the exploration process really is simple random walk, unlike in, for example, the Erdos-Renyi random graph G(N,p), where the increments are only approximately IID. In this setting, the increments are given by the offspring distribution minus one, and the hitting time of -1 is the total population size of the branching process. So if the expectation of the offspring distribution is at most 1, then the event that the size of the tree is large is an atypical event, corresponding to delayed extinction. Whereas if the expectation is greater than one, then it is an event with limiting positive probability. Indeed, with positive probability the exploration process never hits -1, corresponding to survival of the branching tree. There are plenty of interesting questions about the structure of a branching process tree conditional on having atypically large size, including the spine decomposition of Kesten [KS], but the methods described in this post can be used to quantify the probability, or at least the scale of the probability of this atypical event.

In my current research, I’m studying a random walk embedded in a construction of the infinite-volume DGFF pinned at zero, as introduced by Biskup and Louidor [BL]. The random walk controls the gross behaviour of the field on annuli with dyadically-growing radii. Anyway, in this setting the random walk has Gaussian increments. (In fact, there is a complication because the increments aren’t exactly IID, but that’s definitely not a problem at this level of exposition.) The overall field is decomposed as a sum of the random walk, plus independent DGFFs with Dirichlet boundary conditions on each of the annuli, plus asymptotically negligible corrections from a ‘binding field’. Conditioning that this pinned field be non-negative up to the Kth annulus corresponds to conditioning the random walk to stay above the magnitude of the minimum of each successive annular DGFF. (These minima are random, but tightly concentrated around their expectations.)

Conditioning on $\{T > N\}$

When we condition on $\{T>N\}$, obviously the resulting distribution (of the process) is a mixture of the distributions we obtain by conditioning on each of $\{T=N+1\}, \{T=N+2\},\ldots$. Shortly, we’ll condition on $\{T=N\}$ itself, but first it’s worth establishing how to relate the two options. That is, conditional on $\{T>N\}$, what is the distribution of T?

Firstly, when $\mu>0$, this event always has positive probability, since $\mathbb{P}(T=\infty)>0$. So as $N\rightarrow\infty$, the distribution of the process conditional on $\{T>N\}$ converges to the distribution of the process conditional on survival. So we’ll ignore this for now.

In the case $\mu\le 0$, everything is encapsulated in the tail of the probabilities $\mathbb{P}(T=N)$, and these tails are qualitatively different in the cases $\mu=0$ and $\mu<0$.

When $\mu=0$, then $\mathbb{P}(T=N)$ decays polynomially in N. In the special case where $S_n$ is simple symmetric random walk (and N has the correct parity), we can check this just by an application of Stirling’s formula to count paths with this property. By contrast, when $\mu<0$, even demanding $S_N=-1$ is a large deviations event in the sense of Cramer’s theorem, and so the probability decays exponentially with N. Mogulskii’s theorem gives a large deviation principle for random walks to lie above a line defined on the scale N. The crucial fact here is that the probabilistic cost of staying positive until N has the same exponent as the probabilistic cost of being positive at N. Heuristically, we think of spreading the non-expected behaviour of the increments uniformly through the process, at only polynomial cost once we’ve specified the multiset of values taken by the increments. So, when $\mu<0$, we have

$\mathbb{P}(T\ge(1+\epsilon)N) \ll \mathbb{P}(T= N).$

Therefore, conditioning on $\{T\ge N\}$ in fact concentrates T on N+o(N). Whereas by contrast, when $\mu=0$, conditioning on $\{T\ge N\}$ gives a nontrivial limit in distribution for T/N, supported on $[1,\infty)$.

A related problem is the value taken by $S_N$, conditional on {T>N}. It’s a related problem because the event {T>N} depends only on the process up to time N, and so given the value of $S_N$, even with the conditioning, after time N, the process is just an unconditioned RW. This is a classic application of the Markov property, beloved in several guises by undergraduate probability exam designers.

Anyway, Iglehart [Ig2] shows an invariance principle for $S_N | T>N$ when $\mu<0$, without scaling. That is $S_N=\Theta(1)$, though the limiting distribution depends on the increment distribution in a sense that is best described through Laplace transforms. If we start a RW with negative drift from height O(1), then it hits zero in time O(1), so in fact this shows that conditonal on $\{T\ge N\}$, we have T= N +O(1) with high probability. When $\mu=0$, we have fluctuations on a scale $\sqrt{N}$, as shown earlier by Iglehart [Ig1]. Again, thinking about the central limit theorem, this fits the asymptotic description of T conditioned on T>N.

Conditioning on $T=N$

In the case $\mu=0$, conditioning on T=N gives

$\left[\frac{1}{\sqrt{N}}S(\lfloor Nt\rfloor ) ,t\in[0,1] \right] \Rightarrow W^+(t),$ (*)

where $W^+$ is a standard Brownian excursion on [0,1]. This is shown roughly simultaneously in [Ka] and [DIM]. This is similar to Donsker’s theorem for the unconditioned random walk, which converges after rescaling to Brownian motion in this sense, or Brownian bridge if you condition on $S_N=0$. Skorohod’s proof for Brownian bridge [Sk] approximates the event $\{S_N=0\}$ by $\{S_N\in[-\epsilon \sqrt{N},+\epsilon \sqrt{N}]\}$, since the probability of this event is bounded away from zero. Similarly, but with more technicalities, a proof of convergence conditional on T=N can approximate by $\{S_m\ge 0, m\in[\delta N,(1-\delta)N], S_N\in [-\epsilon \sqrt{N},+\epsilon\sqrt{N}]\}$. The technicalities here emerge since T, the first return time to zero, is not continuous as a function of continuous functions. (Imagine a sequence of processes $f^N$ for which $f^N(x)\ge 0$ on [0,1] and $f^N(\frac12)=\frac{1}{N}$.)

Once you condition on $T=N$, the mean $\mu$ doesn’t really matter for this scaling limit. That is, so long as variance is finite, for any $\mu\in\mathbb{R}$, the same result (*) holds, although a different proof is in general necessary. See [BD] and references for details. However, this is particularly clear in the case where the increments are Gaussian. In this setting, we don’t actually need to take a scaling limit. The distribution of Gaussian *random walk bridge* doesn’t depend on the mean of the increments. This is related to the fact that a linear transformation of a Gaussian is Gaussian, and can be seen by examining the joint density function directly.

Conditioning on $T=\infty$

When $\mu>0$, the event $\{T=\infty\}$ occurs with positive probability, so it is well-defined to condition on it. When $\mu\le 0$, this is not the case, and so we have to be more careful.

First, an observation. Just for clarity, let’s take $\mu<0$, and condition on $\{T>N\}$, and look at the distribution of $S_{\epsilon N}$, where $\epsilon>0$ is small. This is approximately given by

$\frac{S_{\epsilon N}}{\sqrt{N}}\stackrel{d}{\approx}W^+(\epsilon).$

Now take $\epsilon\rightarrow\infty$ and consider the RHS. If instead of the Brownian excursion $W^+$, we instead had Brownian motion, we could specify the distribution exactly. But in fact, we can construct Brownian excursion as the solution to an SDE:

$\mathrm{d}W^+(t) = \left[\frac{1}{W^+(t)} - \frac{W^+(t)}{1-t}\right] \mathrm{d}t + \mathrm{d}B(t),\quad t\in(0,1)$ (**)

for B a standard Brownian motion. I might return in the next post to why this is valid. For now, note that the first drift term pushes the excursion away from zero, while the second term brings it back to zero as $t\rightarrow 1$.

From this, the second drift term is essentially negligible if we care about scaling $W^+(\epsilon)$ as $\epsilon\rightarrow 0$, and we can say that $W^+(\epsilon)=\Theta(\sqrt{\epsilon})$.

So, returning to the random walk, we have

$\frac{S_{\epsilon N}}{\sqrt{\epsilon N}}\stackrel{d}{\approx} \frac{W^+(\epsilon)}{\sqrt{\epsilon}} = \Theta(1).$

At a heuristic level, it’s tempting to try ‘taking $N\rightarrow\infty$ while fixing $\epsilon N$‘, to conclude that there is a well-defined scaling limit for the RW conditioned to stay positive forever. But we came up with this estimate by taking $N\rightarrow\infty$ and then $\epsilon\rightarrow 0$ in that order. So while the heuristic might be convincing, this is not the outline of a valid argument in any way. However, the SDE representation of $W^+$ in the $\epsilon\rightarrow 0$ regime is useful. If we drop the second drift term in (**), we define the three-dimensional Bessel process, which (again, possibly the subject of a new post) is the correct scaling limit we should be aiming for.

Finally, it’s worth observing that the limit $\{T=\infty\}=\lim_{N\rightarrow\infty} \{T>N\}$ is a monotone limit, and so further tools are available. In particular, if we know that the trajectories of the random walk satisfy the FKG property, then we can define this limit directly. It feels intuitively clear that random walks should satisfy the FKG inequality (in the sense that if a RW is large somewhere, it’s more likely to be large somewhere else). You can do a covariance calculation easily, but a standard way to show the FKG inequality applies is by verifying the FKG lattice condition, and unless I’m missing something, this is clear (though a bit annoying to check) when the increments are Gaussian, but not in general. Even so, defining this monotone limit does not tell you that it is non-degenerate (ie almost-surely finite), for which some separate estimates would be required.

A final remark: in a recent post, I talked about the Skorohod embedding, as a way to construct any centered random walk where the increments have finite variance as a stopped Brownian motion. One approach to conditioning a random walk to lie above some discrete function is to condition the corresponding Brownian motion to lie above some continuous extension of that function. This is a slightly stronger conditioning, and so any approach of this kind must quantify how much stronger. In Section 4 of [BL], the authors do this for the random walk associated with the DGFF conditioned to lie above a polylogarithmic curve.

References

[BD] – Bertoin, Doney – 1994 – On conditioning a random walk to stay nonnegative

[BL] – Biskup, Louidor – 2016 – Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field

[DIM] – Durrett, Iglehart, Miller – 1977 – Weak convergence to Brownian meander and Brownian excursion

[Ig1] – Iglehart – 1974 – Functional central limit theorems for random walks conditioned to stay positive

[Ig2] – Iglehart – 1974 – Random walks with negative drift conditioned to stay positive

[Ka] – Kaigh – 1976 – An invariance principle for random walk conditioned by a late return to zero

[KS] – Kesten, Stigum – 1966 – A limit theorem for multidimensional Galton-Watson processes

[Sk] – Skorohod – 1955 – Limit theorems for stochastic processes with independent increments

# DGFF 1 – The discrete Gaussian free field from scratch

I’ve moved to Haifa in northern Israel to start a post-doc in the probability group at the Technion, and now that my thesis is finished I want to start blogging again. The past couple of weeks have been occupied with finding an apartment and learning about the Discrete Gaussian Free Field. All questions about the apartment are solved, but fortunately lots remain open about the DGFF, so I thought I’d write some background about this object and methods which have been used to study it.

Background – Random walk bridge

When we think of a random walk, we usually think of the index as time, normally going forwards. So for a random walk bridge, we might assume $Z_0=0$, and then condition on $Z_N=0$, thinking of this as a demand that the process has returned to zero at the future time. In some applications, this is the ideal intuition, but in others, it is more useful to think of the random walk bridge

$(0=Z_0,Z_1,\ldots,Z_{N-1},Z_N=0),$

as a random height function indexed by [0,N], where the probability of a given path decomposes naturally into a product depending on the N increments, up to a normalising constant.

Naturally, we are interested in the asymptotic behaviour of such a random walk bridge when $N\rightarrow\infty$. So long as the step distribution has finite variance, a conditioned version of Donsker’s theorem shows that the rescaled random walk bridge converges in distribution to Brownian bridge. Note that Brownian bridge

$(B^{\mathrm{br}}_t, t\in[0,1])$

can be constructed either by conditioning a standard Brownian motion B to return to zero at time one (modulo some technicalities – this event has zero probability), or by applying an appropriate (random) linear shift

$B^{\mathrm{br}}(t):= B(t) - tB(1).$ (*)

It is not too hard to calculate the distribution of $B^{\mathrm{br}}(t)$ for each $t\in[0,1]$, and with a bit more work, one can calculate the joint distribution of $(B^{\mathrm{br}}(s),B^{\mathrm{br}}(t))$. In particular, the joint distribution is multivariate Gaussian, and so everything depends on the covariance ‘matrix’ (which here is indexed by [0,1]).

So if we return to a random walk bridge what should the step distribution be? Simple symmetric RW is a natural choice, as then lots of the quantities we might want to consider boil down to combinatorial calculations. Cleverness and Stirling’s formula can often get us useful asymptotics. But there are lots of inconveniences, not least the requirement to be careful about parity (N has to be even for a start unless you make the walk lazy, in which case the combinatorics becomes harder), and even if these can be overcome in a given calculation, it would be better not to have this.

The claim is that the random walk with Gaussian increments is by far the easiest to analyse asymptotically. As a further heuristic, think about the statement of the central limit theorem in the case where the underlying distribution is normal: it’s true but obvious. [Indeed, it’s my favourite piece of advice to anyone taking second year probability exams to check that your proposed statement of CLT does actually work for $N(\mu,\sigma^2)$…] More concretely, if a RW has Gaussian increments, then the path $(Z_1,\ldots,Z_N)$ is a multivariate normal, or a Gaussian process with finite index set. In particular, covariances define the distribution. It remains a Gaussian process after conditioning on $Z_N=0$, and the linear tilting argument at (*) remains true here, and can indeed be applied to turn any boundary conditions into any other boundary conditions.

The discrete Gaussian free field

We know how to generalise the domain of a random walk to higher dimensions. But what generalising the index to higher dimension? So now there is definitely no arrow of time, and the notion of a random height function above $\mathbb{Z}^2$ (or a subset of it) is helpful, for which a scaling limit might be a random surface rather than Brownian motion.

Because we can’t well-order $\mathbb{Z}^d$, it’s harder to define any such random object on the entire lattice immediately, so we start with compact connected subsets, with zero boundary conditions, as in the one-dimensional case of random walk bridge. Formally, let D be a finite subset of $\mathbb{Z}^d$, and the boundary $\partial D$ those elements of $D^c$ which are adjacent to an element of D, and let $\bar D:= D\cup \partial D$.

Then, the discrete Gaussian free field on D is a random real vector $h^D=(h^D_x: x\in \bar D)$, with probability density proportional to

$\mathbf{1}\{h^D_x=0, x\in\partial D\}\exp\left ( - \frac{1}{4d} \sum_{x\sim y}(h^D_x - h^D_y)^2 \right),$ (1)

where we write $x\sim y$ if that x,y are adjacent in $\bar D$. We won’t at any stage worry much about the partition function which normalises this pdf. Note also that $\frac{1}{4d}$ is just a convenient choice of constant, which corresponds to one of the canonical choices for the discrete Laplacian. Adjusting this constant is the same as uniformly rescaling the values taken by the field.

The immediate interpretation of (1) is that the values taken by the field at vertices which are close to each other are positively correlated. Furthermore, the form of the density is Gaussian. Concretely, if the values of $h^D$ are fixed everywhere except one vertex $x\in D$, then the conditional distribution of $h^D_x$ is Gaussian. Later, or in subsequent posts, we will heavily develop this idea. Alternatively, we could if we really wanted describe the model in terms of independent Gaussians describing the ‘increment’ along each edge in D (which we should direct), subject to a very large number of conditions, namely that the sum of increments along any directed cycle is zero. This latter description might be more useful if you wanted to define a DGFF on a more sparse graph, but won’t be useful in what follows.

Note that we can rearrange the Laplacian in (1) in terms of the transition kernel p( ) of the simple random walk of D to obtain

$\exp\left( -\frac12 (h^D)^T (\mathbf{P}-\mathbf{1})h^D \right),$

where $P_{x,y}=p(y-x)$ is the transition matrix of SRW on D. In particular, this means that the free field is Gaussian, and we can extract the covariances via

$\mathrm{Cov}(h^D_x,h^D_y) = \left[ (\mathbf{1}-\mathbf{P})^{-1}\right]_{x,y}$

$= \left[\sum_{n\ge 0} \mathbf{P}^n\right]_{x,y} = \sum_{n\ge 0} \mathbb{P}_x\left[X_n=y,\tau_{\partial D}>n\right],$

where, under $\mathbb{P}_x$, $(X_0,X_1,\ldots)$ is simple random walk started from x.

This final quantity records the expected number of visits to y before leaving the domain D, for a random walk started at x, and is called the Green’s function.

In summary, the DGFF on D is the centred Gaussian random vector indexed by $\bar D$ with covariance given by the Green’s function $G_D(x,y)$.

How many of these equivalences carries over to more general D-indexed random fields is discussed in the survey paper by Velenik. But it’s worth emphasising that having the covariance given by the Green’s function as in the definition we’ve just given is a very nice property, as there are lots of pre-existing tools for calculating these. By contrast, it’s hard to think of a natural model for an integer-valued surface of this kind, as an analogue to SRW.

[Though definitely not impossible. The nicest example I’ve heard of is for height functions of large uniform domino tilings within their ‘arctic circle’, which have GFF asymptotics. See this paper by Kenyon.]

A continuous limit?

We motivated the discussion of random walk bridge by the limit object, namely Brownian bridge. Part of the reason why the DGFF is more interesting than Gaussian random walk bridge, is that the limit object, the (continuum) Gaussian free field is hard to define classically in two dimensions.

We might suppose that the DGFF in $V_N$, the square box of width N has some scaling limit as $N\rightarrow\infty$. However, for fixed $x,y\in [0,1]^2$, (and taking integer parts component-wise), well-known asymptotics for SRW in a large square lattice (more on this soon hopefully) assert that

$\mathrm{Cov}(h^{V_N}_{\lfloor Nx \rfloor},h^{V_N}_{\lfloor Ny\rfloor}) \sim \log |x-y|,$ (2)

and so any scaling limit will rescale only the square domain, not the height (since there is no N on the RHS of (2)). However, then the variance of the proposed limit is infinite everywhere.

So the GFF does not exist as a random height function on $[0,1]^2$, with the consequence that a) more care is needed over its abstract definition; b) the DGFF in 2D on a large square is an interesting object, since it does exist in this sense.

What makes it ‘free’?

This seemed like a natural question to ask, but I’ve received various answers. Some sources seem to suggest that having zero boundary condition is free. Other sources refer to the Hamiltonian (that is the term inside the exponential function at (1) ) as free since it depends only on the increments between values. If the Hamiltonian also depends on the heights themselves, for example via the addition of a $\sum_{x} \Psi(h^D_x)$ term, then for suitable choice of function $\Psi$, this is interpreted as a model where the particles have mass. The physical interpretation of these more general Gibbs measures is discussed widely, and I’m not very comfortable with it all at the moment, but aim to come back to it later, when hopefully I will be more comfortable.

# Parking on a ring, linear hashing

I’ve spent most of my doctorate trying to analyse how adding destructive dynamics affects the behaviour of a particular random growth process, the classical random graph. In this post I’m going to talk about another random growth process, which is slightly less natural, but for which one can show some similar qualitative properties.

The model, and the additive coalescent

Consider m places arranged in a circle, and for consistency of analogy we think of these as parking spaces. Some number n of cars will arrive one at a time. Each car will arrive at a space chosen uniformly at random. If it is empty they will park in it, otherwise they will look clockwise until they find an empty space, and park there. For now we are only interested in growth, so we assume cars never leave. We are interested in the sizes of blocks of consecutively parked cars.

The reason to consider this slightly unnatural statement is its equivalence to the problem of hashing with linear probing, apparently a key topic in computer science, which I won’t pretend that I know anything about. In any case, it’s a nice model, and it seems reasonable that it would have a basis in more realistic search algorithms.

So, how does the sequence of sizes of blocks of consecutively parked cars grow? Well, given the sequence of block sizes, it is reasonably easy to convince yourself that the order of the blocks around the circle is uniformly random, and the number of empty spaces between adjacent blocks is also uniformly random.

Assume for now that there are at least three blocks. A block of size x can merge with a block of size y with the arrival of the next car only if the blocks are adjacent, with exactly one empty space between them. The chance of this is uniform among all pairs of blocks. Now suppose this is the case, and that the block of size y lies clockwise from the block of size x. Then they will merge precisely if the next car arrives at any of the x occupied spaces in that block, or at the empty space between the pair of blocks. This has probability $\frac{x+1}{m}$. There’s also the opposite ordering to consider, where the block of size x lies clockwise from the other. The total probability of this merge $\{x,y\}\mapsto \{x+y+1\}$ is therefore proportional to (x+y+2).

So the process of block sizes looks a bit like the additive coalescent, at least for large blocks. This is in contrast to the random graph process, where the sequence of component sizes behaves exactly like a multiplicative coalescent, where blocks merge at a rate proportional to the product of their sizes.

Asymptotics

As in the random graph process, it’s interesting to ask roughly how large the largest block will be in such a configuration. Pittel [3] considers the case where the number of empty places $\ell = m-n \approx \beta m$, for some $\beta\in (0,1)$.

A less interesting model would be to choose the positions of the n cars uniformly at random. But then the size of a block is roughly geometric with parameter $\beta$, and there are $\Theta(m)$ blocks with high probability. Relatively straightforward calculations in extreme value theory suggest that the largest block is likely to have size on the order of $\log m$ in this setting.

Of course, the actual model is slightly more complicated, because the size of a block is self-reinforcing, since larger blocks are more likely to grow than smaller blocks. However, we can still get somewhere with naïve estimates. Let’s label the places clockwise. Then in order for there to be a block starting at 0 and stretching beyond $\alpha \log m$, a necessary condition is that at least $\alpha \log m$ cars arrive at those places. The number of cars which arrive at those places is binomial, since there are n cars, and each arrives at a place chosen uniformly, and independently of the other cars. So this event corresponds to

$\mathrm{Bin}(n,\frac{\alpha \log m}{m}) \ge \alpha \log m.$

Then, since $n\approx (1-\beta)n$, this event corresponds approximately to

$\mathrm{Po}((1-\beta)\alpha \log m) \ge \alpha \log m.$

The probability that a Poisson RV is at least a constant multiple larger than its mean decays exponentially with the mean, hence in this case the probability is asymptotically some negative power of m, depending on the value of $\alpha$. But there are $O(m)$ possible places for such a block to start, so whether we can apply a union bound usefully or not depends on whether the power of m is strictly less than -1.

Since all of this depends on $\alpha$, it is reasonable that everything is fine, and the largest block does have size at least $\alpha \log m$ when $\alpha$ is small, and very unlikely when $\alpha$ is large. This heuristic argument fits with Pittel’s theorem. Indeed, his result shows much stronger concentration: that the fluctuations of the size of the largest block are O(1).

Critical regime and empirical processes

The following is a paraphrase of the introduction and some methods from [2].

Obviously, once m=m cars have arrived, there’s no room for manoeuvre and definitely all the places are taken in one giant block. But it’s not obvious in general what scaling for the number of gaps will give rise to giant blocks of $\Theta(m)$ cars.

As for the random graph, we can find a process similar to the exploration process of a (random) graph which encodes much of the information we care about. Let $Y_k$ be the number of cars which arrive at place k. So the sum of the $Y_k$s will be n, the total number of cars. Now consider the process

$C_0=0, \ldots, C_{k+1}=C_k + Y_{k+1}-1.$

A block has the property that the number of arrivals within that set of places is equal to the number of places. So every time this *empirical process* C drops below its previous running minimum, this indicates the end of a block. To make this equivalence precise, we need to be a bit careful about where we start counting. It works exactly if we start at the beginning of a block. If not, it might introduce some unwanted divisions within the first block.

What we have is a process that looks roughly like a random walk that is constrained to pass through the point (m,n-m), which is equal to (m,-l). Even if we aren’t totally precise about how this is like a random walk, we would expect to see Brownian fluctuations after rescaling. Indeed, we might expect to see a Brownian bridge added to a deterministic linear function with negative gradient. But this is only meaningful if the random part is at least as large as the deterministic part, and since the fluctuations have order $\sqrt{m}$, if l is much larger than this, the rescaled empirical process is essentially deterministic, so we won’t see any macroscopic excursions above the minimum.

If l is substantially smaller than $\sqrt{m}$, then there is no real difference between (m,-l) and (m,0), and what we see is just a Brownian bridge. At this point, where we choose to start the process is actually important. If we were to start it at the minimum of the Brownian bridge instead, we would have seen a Brownian excursion, which corresponds to one block occupying (almost) all of the places.

Unsurprisingly, the story is completed by considering $\ell=\Theta(\sqrt{m})$, where the rescaled empirical process looks like a slanted Brownian bridge, that is Brownian motion conditioned to pass through $(1,-\frac{\ell}{\sqrt{m})$. There isn’t an obvious fix to the question of where to start the process, but it turns out that the correct way is now adding a Brownian excursion onto the deterministic linear function with gradient $- \frac{\ell}{\sqrt{m}}$. It’s now reasonable that the excursions above the minimum should macroscopic.

This scaling limit works dynamically as well, where the same Brownian excursion is used for different gradients of the deterministic line, corresponding to $\ell$ moving through the critical window $m-\Theta(\sqrt{m})$. Finally, a direction to Bertoin’s recent paper [1] for the model with an additional destructive property. Analogous to the forest fire, blocks of cars are removed at a rate proportional to their size (as a result, naturally, of ‘Molotov cocktails’…). Similar effects of self-organised criticality are seen when the rate of bombs is scaled appropriately.

References

[1] – Bertoin – Burning cars in a parking lot (paper / slides)

[2] – Chassaing + Louchard – Phase transition for parking blocks, Brownian excursion and coalescence (arXiv)

[3] – Pittel – Linear probing: the probable largest search time grows logarithmically with the number of records

# Random Maps 3 – Leaves and Geodesics in BCRT

Recall in the previous two posts, we’ve introduced some of the background to maps on various surfaces. In particular, we’ve introduced the remarkable Cori-Vauquelin-Schaeffer bijection which maps between plane trees labelled with uniform increments and quadrangulations of the sphere, up to some careful fiddling around with rooting and pointing an edge.

We are interested in the case where we choose uniformly a large element from these classes. We want to derive a scaling limit for the uniform planar quadrangulation, and we hope that we will be able to carry some properties of the scaling limit of the labelled trees, which may well be simpler, across the CVS bijection. It is convenient that the vertices of the plane tree become the vertices of the quadrangulation. We are looking to find some sort of metric limit, in the Gromov-Hausdorff sense, and so it will remain to deduce exactly how to use the labelling obtained from the tree to gain information about distances in the (limiting) quadrangulation.

Of course, all of this relies on the fact that there is a nice limit for the ordered plane trees in the first place. Unsurprisingly, it turns out that this is Aldous’s Brownian continuum random tree. The easiest way to see this is to consider the contour process of the ordered plane tree. This is chosen uniformly at random from the set of paths from (0,0) to (2n,0) with increments of size {-1,1} and which stay non-negative. It is thus precisely a simple random walk started at (0,0) conditioned to hit (2n,0) and to be non-negative. Since SRW suitably rescaled converges to Brownian motion, it is unsurprising (but not totally trivial) that this conditioned object converges to a Brownian excursion.

The Brownian excursion can be viewed as a continuous analogue of the contour process for the BCRT, but it is more natural to consider this convergence in the Gromov-Hausdorff topology. In this setting, we say that for a large value of n, the tree is ‘roughly isometric’ to the BCRT in distribution. Here, roughly isometric means the two metric spaces can be embedded isometrically into a common metric space such that they are close together, now in the sense of Hausdorff distance.

At this point, it is worth thinking about this interpretation of the BCRT. We have previously considered this as the scaling limit of a uniformly chosen Cayley tree, that is any unrooted tree on n labelled vertices. Essentially, we are now specifying that the BCRT can carry extra information, namely a root, and geometric information about the order of branches. The root is uncontroversial. Canonically, the root of the BCRT will be at the point associated with time 0 in the driving Brownian excursion. However, we can easily check that the distribution of a uniform rooted plane tree is invariant under re-rooting, and so any argument we have for convergence of the rooted trees to the BCRT will work with the root in a different place. Applying something like a tower law, we conclude that the convergence works when the root is chosen uniformly in the limit.

One potential problem to be discussed is what it means to choose a point uniformly in the limit. We have two possible approaches. One is to consider Lebesgue measure on any path in the BCRT, and glue these together. However, we have a uniform stick-breaking construction of the BCRT, and one consequence of the construction is that the total length of sticks required is infinite, so this won’t work.

The other option is to project Lebesgue measure on [0,1] via the same map that sends points on the Brownian excursion to points in the tree. Note that the so-called real tree is constructed from the excursion by identifying points s and t where f(s)=f(t), and f(x)>f(s) for x in (s,t). But then we might wonder whether this can really be said to be ‘uniform’, since different points in the BCRT will have a different number of pre-images in [0,1]. In fact though, it turns out that in this sense, projected-Leb[0,1]-almost all the points in the BCRT are leaves.

To prove this, naturally we first need to define a leaf, in the setting of these continuum trees. The degree of a vertex is an idea we might keep in mind, but we can’t use this, as we don’t have vertices any more. However, we have a continuous analogue of degree, given by counting the number of connected components remaining after removing a vertex. In particular, we can define the set of leaves as

$\mathcal{L}(\mathcal{T}):=\{x\in\mathcal{T}:\mathcal{T}\backslash \{x\}\text{ is connected}\}.$

We will give a sketch proof of this result about leaves shortly. First, we clarify some notation, and consider properties of geodesics (shortest-length paths) in the tree.

Define $\check{f}(u,v):=\min_{x\in[u\wedge v,u\vee v]} f(x)$ to be the minimum value attained by f between u and v. Consider the value x at which this minimum is attained. Then, projecting onto the tree, p(x) is the ‘most recent common ancestor’ of points u and v. We can make this a bit more precise by considering geodesics in the tree starting at the root. Analogous to the unique path property in a discrete tree, in this continuous setting there is a unique path from the root to any given point, along which the height is strictly increasing. This is not surprising. It follows from one of the definitions of a real tree that the length of the path from p(0) to p(s) should be f(s), and so there is a unique isometric embedding of [0,f(s)] into $\mathcal{T}_f$ which starts at 0 and ends at p(s). Anyway, under this $p(\check{f}(s,t))$ gives the point at which the geodesics from p(s) to p(0) and from p(t) to p(0) meet.

Furthermore, we can now describe the distance in the tree between p(s) and p(t). This is given by

$d_f(s,t):= f(s)+f(t)-2\check{f}(s,t),$

and with the geodesic picture, it is easy to see why. Consider the point x at which $\check{f}(s,t)$ achieves the minimum. As we have said, this lies on the geodesics from p(s) to 0 and p(t) to 0, and paths between points are unique, so removing point x disconnects p(s) and p(t) in the tree. So we need to concatenate the geodesic from p(s) to p(x) and from p(x) to p(t). But these are subsets of the two geodesics discussed, and their respective lengths are $f(s)-\check{f}(s,t)$ and $f(t)-\check{f}(s,t)$.

We can now give a sketch proof the result that almost all the support of $\lambda_f$, the projection on Lebesgue measure from [0,1] onto $\mathcal{T}_{f}$ is on $\mathcal{T}(\mathcal{T}_f)$.

Given $s,t\in[0,1]$, suppose we are removing p(s), and this separates p(t) from the root, which is canonically p(0). Without loss of generality, take t>s. Now suppose that $\check{f}(s,t), and that, as before, this infimum is attained at $x\in[s,t]$. Then the geodesic from p(0) to p(t) will pass through p(x), but not through p(s), so in particular, removing p(s) cannot disconnect p(t) from the root.

Thus, p(s) is not a leaf if and only if there exists some small window [s,t] such that $f(s)\le f(x),\;\forall x\in[s,t]$. By Blumenthal’s 0-1 law, for fixed x, this happens with probability 0 if f is Brownian motion. Here, f is not Brownian motion, but a Brownian excursion with length 1. However, Blumenthal’s 0-1 law depends on the instantaneous behaviour after time s, ie the sigma field $\mathcal{F}_s^+$. So, for $s\in(0,1)$, the value of a Brownian at time 1 is independent of this sigma field, so if we imagine Brownian excursion as a ‘conditioned’ Brownian motion, this conditioning should have no effect on the conclusion of this corollary to Blumenthal’s 0-1 law.

This is not a formal argument, but it sketches why with probability 1, p(s) is a leaf for each $s\in(0,1)$, from which the result follows.

# Reflected Brownian Motion

A standard Brownian motion is space-homogeneous, meaning that the behaviour of $B_{T+t}-B_T$ does not depend on the value of $B_T$. By Donsker’s Theorem, such a Brownian motion is also the limit in a process space of any homogeneous random walk with zero-drift and constant variance, after suitable rescaling.

In many applications, however, we are interested in real-valued continuous-time Markov processes that are defined not on the whole of the real line, but on the half-line $\mathbb{R}_{\ge 0}$. So as BM is the fundamental real-valued continuous-time Markov process, we should ask how we might adjust it so that it stays non-negative. In particular, we want to clarify uniqueness, or at least be sure we have found all the sensible ways to make this adjustment, and also to consider how Donsker’s Theorem might work in this setting.

We should consider what properties we want this non-negative BM to have. Obviously, it should be non-negative, but it is also reasonable to demand that it looks exactly like BM everywhere except near 0. But since BM has a scale-invariance property, it is essentially meaningful to say ‘near 0’, so we instead demand that it looks exactly like BM everywhere except at 0. Apart from this, the only properties we want are that it is Markov and has continuous sample paths.

A starting point is so-called reflected Brownian motion, defined by $X_t:=|B_t|$. This is very natural and very convenient for analysis, but there are some problems. Firstly, this has the property that it looks like Brownian motion everywhere except 0 only because BM is space-homogeneous but also symmetric, in the sense that $B_t\stackrel{d}{=}-B_t$. This will be untrue for essentially any other process, so as a general method for how to keep stochastic processes positive, this will be useless. My second objection is a bit more subtle. If we consider this as an SDE, we get

$dX_t=\text{sign}(B_t)dB_t.$

This is a perfectly reasonable SDE but it is undesirable, because we have a function of B as coefficient on the RHS. Ideally, increments of X would be a function of X, and the increments of B, rather than the values of B. That is, we would expect $X_{t+\delta t}-X_t$ to depend on $X_t$ and on $(B_{t+s}-B_t, 0\le s\le \delta t)$, but not on $B_t$ itself, as that means we have to keep track of extra information while constructing X.

So we need an alternative method. One idea might be to add some non-negative process to the BM so that the sum stays non-negative. If this process is deterministic and finite, there there is some positive probability that the sum will eventually be negative, so this won’t do. We are looking therefore so a process which depends on the BM. Obviously we could take $\max(-B_t,0)$, but this sum would then spend macroscopic intervals of time at 0, and these intervals would have the Raleigh distribution (for Brownian excursions) rather than the exponential distribution, hence the process given by the sum would not be memoryless and Markov.

The natural alternative is to look for an increasing process $A_t$, and then it makes sense to talk about the minimal increasing process that has the desired property. A moment’s thought suggests that $A_t=-min_{s\le t}B_t$ satisfies this. So we have the decomposition

$B_t=-A_t+S_t,$

where $S_t$ is the height of B above its running minimum. So S is an ideal alternative definition of reflecting BM. In particular, when B is away from its minimum, $dB_t=dS_t$, so this has the property that it evolves exactly as the driving Brownian motion.

What we have done is to decompose a general continuous process into the sum of a decreasing continuous process and a non-negative process. This is known as the Skorohod problem, and was the subject of much interest, even in the deterministic case. Note that process A has the property that it is locally constant almost everywhere, and is continuous, yet non-constant. Unsurprisingly, since A only changes when the underlying BM is 0, A is continuous with respect to the local time process at 0. In fact, A is the local time process of the underlying Brownian motion, by comparison with the construction by direct reflection.

One alternative approach is to look instead at the generator of the process. Recall that the generator of a process is an operator on some space of functions, with $\mathcal{L}f$ giving the infinitissimal drift of $f(X_t)$. In the case of Brownian motion, the generator $(\mathcal{L}f)(x)=\frac12 f''(x)$ for bounded smooth functions f. This is equivalent to saying that

$f(X_t)-f(X_0)-\int_0^t \frac12 f''(X_s)ds$ (*)

is a martingale. This must hold also for reflected Brownian motion, whenever x is greater than 0. Alternatively, if the function f is zero in a small neighbourhood of 0, it should have the same generator with respect to reflected BM. Indeed, for a general smooth bounded function f, we can still consider the expression (*) with respect to reflected BM. We know this expression behaves as a martingale except when X is zero. If f'(0)>0, and T is some hitting time of 0, then $f(X_{T+\delta T})-f(X_T)\ge 0$, hence the expression (*) is a submartingale. So if we restrict attention to functions with f'(0)=0, the generator remains the same. Indeed, by patching together all such intervals, it can be argued that even if f'(0) is not zero,

$f(X_t)-f(X_0)-\int_0^t \frac12 f''(X_s)ds - f'(0)A_t$

is a martingale, where A is the local time process at zero.

I was aware when I started reading about this that there was another family of processes called ‘Sticky Brownian Motion’ that shared properties with Reflected BM, in that it behaves like standard BM away from zero, but is also constrained to the non-negative reals. I think this will get too long if I also talk about that here, so that can be postponed, and for now we consider reflected BM as a limit of reflected (or other) random walks, bearing in mind that there is at least one other candidate to be the limit.

Unsurprisingly, if we have a family of random walks constrained to the non-negative reals, that are zero-drift unit-variance away from 0, then if they converge as processes, the limit is Brownian away from zero, and non-negative. Note that “away from 0” means after rescaling. So the key aspect is behaviour near zero.

What is the drift of reflected BM at 0? We might suspect it is infinite because of the form of the generator, but we can calculate it directly. Given $X_0=0$, we have:

$\frac{\mathbb{E}X_t}{t}=\frac{\mathbb{E}|B_t|}{t}=\frac{\sqrt{t}\mathbb{E}|B_1|}{t},$

so letting $t\rightarrow 0$, we see indeed that the drift is infinite at 0.

For convergence of discrete processes, we really need the generators to converge. Typically we index the discrete-time processes by the time unit h, which tends to 0, and $b_h(x),a_h(x)$ are the rescaled drift and square-drift from x. We assume that we don’t see macroscopic jumps in the limit. For the case of simple random walk reflected at 0, it doesn’t matter exactly how we construct the joint limit in h and x, as the drift is uniform on x>0, but in general this does matter. I don’t want to discuss sticky BM right now, so it’s probably easiest to be vague and say that the discrete Markov processes converge to reflected BM so long they don’t spend more time than expected near 0 in the limit, as the title ‘sticky’ might suggest.

The two ways in which this can happen is if the volatility term $a_h(x)$ is too small, in which case the process looks almost deterministic near 0, or if the drift doesn’t increase fast enough. And indeed, this leads to two conditions. The first is straightforward, if $a_h(x)$ is bounded below, in the sense that $\liminf_{h,x\rightarrow 0} a_h(x)\ge C>0$, then we have convergence to reflected BM. Alternatively, the only danger can arise down those subsequences where $a_h(x)\rightarrow 0$, so if we have that $b_h(x)\rightarrow +\infty$ whenever $h,x,a_h(x)\rightarrow 0$, then this convergence also holds.

Next time I’ll discuss what sticky BM means, what it doesn’t mean, why it isn’t easy to double the local time, and how to obtain sticky BM as a limit of discrete random walks in a similar way to the above.

REFERENCES

S. Varadhan – Chapter 16 from a Lecture Course at NYU can be found here.

# Random Mappings for Cycle Deletion

In previous posts here and here, I’ve talked about attempts to describe a cycle deleting process. We amend the dynamics of the standard random graph process by demanding that whenever a cycle is formed in the graph we delete all the edges that lie on the cycle. The aim of this is to prevent the system growing giant components, and perhaps give a system that displays the characteristics of self-organised criticality. In the posts linked to, we discuss the difficulties caused by the fact that the tree structure of components in such a process is not necessarily uniform.

Today we look in the opposite direction. It gives a perfectly reasonable model to take a multiplicative coalescent with quadratic fragmentation (this corresponds to cycle deletion, since there are $O(n^2)$ edges which would give a cycle if added to a tree on n vertices) and a fragmentation kernel corresponding to adding an extra edge to a uniform spanning tree on n vertices then deleting the edges of the unique cycle. The focus of the rest of this post, we consider this fragmentation mechanism, in particular thinking about how we would sample from it most practically. Not least, without going through Prufer codes or some other clever machinery, it is not trivial to sample a uniform spanning tree.

First, we count the number of unicyclic graphs on n labelled vertices. If we know that the vertices on the cycle are $v_1,\ldots,v_k$, then the number of cycles with an identified edge is

$u_1=1,\quad u_k=\frac{k!}{2},\, k\ge 2.$

If we know that the tree coming off the cycle from vertex v_i has size m, say, then each of the possible rooted labelled trees with size m is equally likely. So taking $w_j=j^{j-1}$, the number of rooted trees on j labelled vertices, we get $B_n(u_\bullet,w_\bullet)$ for the number of such unicyclic graphs on [n]. Recall $B_n$ is the nth Bell polynomial, which gives the size of a compound combinatorial structure, where we have some structure on blocks and some other structure within blocks. Then the random partition of [n] given by the tree sizes has the distribution $\text{Gibbs}_n(u_\bullet,w_\bullet)$.

Consider now a related object, the so-called random mapping digraph. What follows is taken from Chapter 9 of Combinatorial Stochastic Processes. We can view any mapping $M_n:[n]\rightarrow[n]$ as a digraph where every vertex has out-degree 1. Each such digraph contains a collection of directed cycles, supported on those elements x for which $M_n^k(x)=x$ for some k. Such an element x is called a cyclic point. Each cyclic point can be viewed as the root of a labelled tree.

In an identical manner to the unicyclic graph, the sizes of these directed trees in the digraph decomposition of a uniform random mapping is distributed as $\text{Gibbs}_n(\bullet !,w_\bullet)$. So this is exactly the same as the cycle deletion kernel, apart from in the probability that the partition has precisely one block. In practice, for large n, the probability of this event is very small in both cases. And if we wanted to sample the cycle deletion kernel exactly, we could choose the trivial partition with some probability p, and otherwise sample from the random mapping kernel, where p is chosen such that

$p+\frac{1-p}{B_n(\bullet !, w_\bullet)}=\frac{1}{B_n(u_\bullet,w_\bullet)}.$

At least we know from the initial definition of a random mapping, that $B_n(\bullet !,w_\bullet)=n^n$. The number of unicyclic graphs with an identified edge is less clear. It turns out that the partition induced by the random mapping has a nice limit, after rescaling, as the lengths of excursions away from 0 in the standard Brownian bridge on [0,1].

The time for a fuller discussion of this sort of phenomenon is in the context of Poisson-Dirichlet distributions, as the above exchangeable partition turns out to be PD(1/2,1/2). However, for now we remark that the jumps of a subordinator give a partition after rescaling. The case of a stable subordinator is particularly convenient, as calculations are made easier by the Levy-Khintchine formula.

A notable example is the stable-1/2 subordinator, which can be realised as the inverse of the local time process at zero of a Brownian motion. The jumps of this process are then the excursion lengths of the original Brownian motion. A calculation involving the tail of the w_j’s indicates that 1/2 is the correct parameter for a subordinator to describe the random mappings. Note that the number of blocks in the partition corresponds to the local time at zero of the Brownian motion. (This is certainly not obvious, but it should at least be intuitively clear why a larger local time roughly indicates more excursions which indicates more blocks.)

So it turns out, after checking some of the technicalities, that it will suffice to show that the rescaled number of blocks in the random mapping partition $\frac{|\Pi_n|}{\sqrt{n}}$ converges to the Raleigh density, which is a size-biased Normal random variable (hence effectively first conditioned to be positive), and which also is the distribution of the local time of the standard Brownian bridge.

After that very approximate description, we conclude by showing that the distribution of the number of blocks does indeed converge as we require. Recall Cayley’s formula $kn^{n-k-1}$ for the number of labelled forests on [n] with a specified set of k roots. We also need to know how many labelled forests there are with any set of roots. Suppose we introduce an extra vertex, labelled 0, and connect it only to the roots of a rooted labelled forest on [n]. This gives a bijection between unlabelled trees on {0,1,…,n} and labelled forests with a specified set of roots on [n]. So we can use Cayley’s original formula to conclude there are $(n+1)^{n-1}$ such forests. We can do a quick sanity check that these are the same, which is equivalent to showing

$\sum_{k=1}^n k n^{-k-1}\binom{n}{k}=\frac{1}{n}(1+\frac{1}{n})^{n-1}.$

This odd way of writing it is well-motivated. The form of the LHS is reminiscent of a generating function, and the additional k suggests taking a derivative. Indeed, the LHS is the derivative

$\frac{d}{dx}(1+x)^n,$

evaluated at $\frac{1}{n}$. This is clearly the same as the RHS.

That said, having established that the random mapping partition is essentially the same, it is computationally more convenient to consider that instead. By the digraph analogy, we again need to count forests with k roots on n vertices, and multiply by the number of permutations of the roots. This gives:

$\mathbb{P}(|\Pi_n|=k)=\frac{kn^{n-k-1}\cdot k! \binom{n}{k}}{n^n}=\frac{k}{n}\prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right).$

Now we can consider the limit. Being a bit casual with notation, we get:

$\lim \mathbb{P}(\frac{|\Pi_n|}{\sqrt{n}}\in dl)\approx \sqrt{n}dl \mathbb{P}(|\Pi_n|=l\sqrt{n}).$

Since the Raleigh distribution has density $l\exp(-\frac12 l^2)dl$, it suffices for this informal verification to check that

$\prod_{i=1}^{l\sqrt{n}}(1-\frac{i}{n})\approx \exp(-\frac12 l^2).$ (*)

We take logs, so the LHS becomes:

$\log(1-\frac{1}{n})+\log(1-\frac{2}{n})+\ldots+\log(1-\frac{l\sqrt{n}}{n}).$

If we view this as a function of l and differentiate, we get

$d(LHS)=\sqrt{n}dl \log (1-\frac{l}{\sqrt{n}})\approx \sqrt{n}dl \left[-\frac{l}{\sqrt{n}}-\frac{l^2}{2n}\right]\approx -ldl.$

When l is zero, the LHS should be zero, so we can obtain the desired result (*) by integrating then taking an exponential.

# The Contour Process

As I explained in my previous post, I haven’t been reading around as much as I would generally like to recently. A few days in London staying with my parents and catching up with some friends has therefore been a good chance to get back into the habit of leafing through papers and Pitman’s book among other things.

This morning’s post should be a relatively short one. I’m going to define the contour process, a function of a (random or deterministic) tree, related to the exploration process which I have mentioned a few times previously. I will then use this to prove a simple but cute result equating in distribution the sizes of two different branching processes via a direct bijection.

The Contour Process

To start with, we have to have a root, and from that root we label the tree with a depth-first labelling. An example of this is given below. It is helpful at this stage to conceive this process as an explorer walking on the tree, and turning back on themselves only when there is no option to visit a vertex they haven’t already seen. So in the example tree shown, the depth-first exploration visits vertex V_2 exactly four times. Note that with this description, it is clear that the exploration traverses every edge exactly twice, and so the length of the sequence is 2n-1, where n is the number of vertices in the tree since obviously, we start and end at the root.

Another common interpretation of this depth-first exploration is to take some planar realisation of the tree. (Note trees are always planar – proof via induction after removing a leaf.) Then if you treat the tree as a hedge and starting at the root walk along, following the outer boundary with your right hand, this exactly recreates the process.

The height of a tree at a particular vertex is simply the graph distance between that vertex and the root. So when we move from one vertex to an adjacent vertex, the height must increase or decrease by 1.

The contour process is the sequence of heights seen along the depth-first exploration. It is therefore a sequence:

$0=h_0,h_1,\ldots,h_{2n-1}=0,\quad h_i\geq 0,$

and such that $|h_{i+1}-h_i|=1$.

Note that though the contour process uniquely determines the tree structure, the choice of depth-first labelling is a priori non-canonical. For example, in the display above, V_3 might have been explored before V_2. Normally this is resolved by taking the suitable vertex with the smallest label in the original tree to be next. It makes little difference to any analysis to choose the ordering of descendents of some vertex in a depth-first labelling randomly. Note that this explains why it is rather hard to recover Cayley’s theorem about the number of rooted trees on n vertices from this characterisation. Although the number of suitable contour functions is possible to calculate, we would require a complicated multiplicative correction for labelling if we wanted to recover the number of trees.

The only real observation about the uses of the contour process at this stage is that it is not in general a random walk with IID increments for a Galton-Watson branching process. This equivalence is what made the exploration process so useful. In particular, it made it straightforward, at least heuristically, to see why large trees might have a limit interpretation through Brownian excursions. If for example, the offspring distribution is bounded above, say by M, then the contour process certainly cannot be a random walk, as if we have visited a particular vertex exactly M+1 times, then it cannot have another descendent, and so we must return closer to the root at the next step.

I want to mention that in fact Aldous showed his results on scaling limits towards the Continuum Random Tree through the contour process rather than the exploration process. However, I don’t want to say any more about that right now.

A Neat Equivalence

What I do want to talk about is the following distribution on the positive integers. This comes up in Balazs Rath and Balint Toth’s work on forest-fires on the complete graph that I have been reading about recently. The role of this distribution is a conjectured equilibrium distribution for component size in a version of the Erdos-Renyi process where components are deleted (or ‘struck by lightning’) at a rate tuned so that giant components ‘just’ never emerge.

This distribution has the possibly useful property that it is the distribution of the total population size in a Galton-Watson process with Geom(1/2) offspring distribution. It is also the distribution of the total number of leaves in a critical binary branching process, where every vertex has either two descendents or zero descendents, each with probability 1/2. Note that both of these tree processes are critical, as the expected number of offspring is 1 in each case. This is a good start, as it suggests that the relevant equilibrium distribution should also have the power-law tail that is found in these critical branching processes. This would confirm that the forest-fire model exhibits self-organised criticality.

Anyway, as a sanity check, I tried to find a reason why, ignoring the forest-fires for now, these two distributions should be the same. One can argue using generating functions, but there is also the following nice bijective argument.

We focus first on the critical Geometric branching process. We examine its contour function. As explained above, the contour process is not in general a random walk with IID increments. However, for this particular case, it is. The geometric distribution should be viewed as the family of discrete memoryless distributions.

This is useful for the contour process. Note that if we are at vertex V for the (m+1)th time, that is we have already explored m of the edges out of V, then the probability that there is at least one further edge is 1/2, independently of the history of the exploration, as the offspring distribution is Geometric(1/2), which we can easily think of as adding edges one at a time based on independent fair coin tosses until we see a tail for example. The contour process for this random tree is therefore a simple symmetric random walk on Z. Note that this will hit -1 at some point, and the associated contour process is the RW up to the final time it hits 0 before hitting -1. We can check that this obeys the clear rule that with probability 1/2 the tree is a single vertex.

Now we consider the other model, the Galton-Watson process with critical binary branching mechanism. We should consider the exploration process. Recall that the increments in this process are given by the offspring distribution minus one. So this random sequence also behaves as a simple symmetric random walk on Z, again stopped when we hit -1.

To complete the bijective argument, we have to relate leaves in the binary process to vertices in the geometric one. A vertex is a leaf if it has no offspring, so the number of leaves is the number of times before the hitting time of -1 that the exploration process decreases by 1. (*)

Similarly for the contour process. Note that there is bijection between the set of vertices that aren’t the root and the set of edges. The contour process explores every edge exactly twice, once giving an increase of 1 and once giving a decrease of 1. So there is a bijection between the times that the contour process decreases by 1 and the non-root vertices. But the contour process was defined only up to the time we return to the root. This is fine if we know in advance how large the tree is, but we don’t know which return to the root is the final return to the root. So if we extend the random walk to the first time it hits -1, the portion up until the last increment is the contour process, and the final increment must be a decrease by 1, hence there is a bijection between the number of vertices in the Geom(1/2) G-W tree and the number of times that the contour process decreases by 1 before the hitting time of -1. Comparing with (*) gives the result.

# Uniform Spanning Trees

For applications to random graphs, the local binomial structure and independence means that the Galton-Watson branching process is a useful structure to consider embedding in the graph. In several previous posts, I have shown how we can set up the so-called exploration process which visits the sites in a component as if the component were actually a tree. The typical degree is O(1), and so in particular small components will be trees with high probability in the limit. In the giant component for a supercritical graph, this is not the case, but it doesn’t matter, as we ignore vertices we have already explored in our exploration process. We can consider the excess edges separately by ‘sprinkling’ them back in once we have the tree-like backbone of all the components. Again, independence is crucial here.

I am now thinking about a new model. We take an Erdos-Renyi process as before, with edges arriving at some fixed rate, but whenever a cycle appears, we immediately delete all the edges that make up the cycle. Thus at all times the system consists of a collection (or forest) of trees on the n vertices. So initially this process will look exactly like the normal E-R process, but as soon as the components start getting large, we start getting excess edges which destroy the cycles and make everything small again. The question to ask is: if we run the process for long enough, roughly how large are all the components? It seems unlikely that the splitting mechanism is so weak that we will get true giant components forming, ie O(n) sizes, so we might guess that, in common with some other split-merge models of this type, we end up with components of size $n^{2/3}$, as in the critical window for the E-R process.

In any case, the scaling limit process is likely to have components whose sizes grow with n, so we will have a class of trees larger than those we have considered previously, which have typically been O(1). So it’s worth thinking about some ways to generate random trees on a fixed number of vertices.

Conditioned Galton-Watson

Our favourite method of creating trees is inductive. We take a root and connect the root to a number of offspring given by a fixed distribution, and each of these some offspring given by an independent sample from the same distribution and so on. The natural formulation gives no control over the size of the tree. This is a random variable whose distribution depends on the offspring distribution, and which in some circumstances be computed explicitly, for example when the offspring distribution is geometric. In other cases, it is easier to make recourse to generating functions or to a random walk analogue as described in the exploration process discussion.

Of course, there is nothing to stop us conditioning on the total size of the population. This is equivalent to conditioning on the hitting time of -1 for the corresponding random walk, and Donsker’s theorem gives several consequences of a convergence relation towards a rescaled Brownian excursion. Note that there is no a priori labelling for the resulting tree. This will have to be supplied later, with breadth-first and depth-first the most natural choices, which might cause annoyance if you actually want to use it. In particular, it is not obvious, and probably not true unless you are careful, that the distribution is invariant under permuting the labels (having initially assumed 1 is the root etc) which is not ideal if you are embedding into the complete graph.

However, we would like to have some more direct constructions of random trees on n vertices. We now consider perhaps the two best known such methods. These are of particular interest as they are applicable to finding random spanning trees embedded in any graph, rather than just the complete graph.

Uniform Spanning Tree

Given a connected graph, consider the set of all subgraphs which are trees and span the vertex set of the original graph. An element of this set is called a spanning tree. A uniform spanning tree is chosen uniformly at random from the set of spanning trees on the complex graph on n vertices. A famous result of Arthur Cayley says that the number of such spanning trees is $n^{n-2}$. There are various neat proofs, many of which consider a mild generalisation which gives us a more natural framework for using induction. This might be a suitable subject for a subsequent post.

While there is no objective answer to the question of what is the right model for random trees on n vertices, this is what you get from the Erdos-Renyi process. Formally, conditional on the sizes of the (tree) components, the structures of the tree components are given by UST.

To see why this is the case, observe that when we condition that a component has m vertices and is a tree, we are demanding that it be connected and have m-1 edges. Since the probability of a particular configuration appearing in G(n,p) is a function only of the number of edges in the configuration, it follows that the probability of each spanning tree on the m vertices in question is equal.

Interesting things happen when you do this dynamically. That is, if we have two USTs of sizes m and n at some time t, and condition that the next edge to be added in the process joins them, then the resulting component is not a UST on m+n vertices. To see why, consider the probability of a ‘star’, that is a tree with a single distinguished vertex to which every other vertex is joined. Then the probability that the UST on m vertices is a star is $\frac{m}{m^{m-2}}=m^{-(m-3)}$. By contrast, it is not possible to obtain a star on m+n vertices by joining a tree on m vertices and a tree on n vertices with an additional edge.

However, I think the UST property is preserved by the cycle deletion mechanism mentioned at the very start of this post. My working has been very much of the back of the envelope variety, but I am fairly convinced that once you have taken a UST and conditioned on the sizes of the smaller trees which result from cycle deletion. My argument is that you might as well fix the cycle to be deleted, then condition on how many vertices are in each of the trees coming off this cycle. Now the choice of each of these trees is clearly uniform among spanning trees on the correct number of vertices.

However, it is my current belief that the combination of these two mechanisms does not give UST-like trees even after conditioning on the sizes at fixed time.