Random walks conditioned to stay positive

In this post, I’m going to discuss some of the literature concerning the question of conditioning a simple random walk to lie above a line with fixed gradient. A special case of this situation is conditioning to stay non-negative. Some notation first. Let (S_n)_{n\ge 0} be a random walk with IID increments, with distribution X. Take \mu to be the expectation of these increments, and we’ll assume that the variance \sigma^2 is finite, though at times we may need to enforce slightly stronger regularity conditions.

(Although simple symmetric random walk is a good example for asymptotic heuristics, in general we also assume that if the increments are discrete they don’t have parity-based support, or any other arithmetic property that prevents local limit theorems holding.)

We will investigate the probability that S_n\ge 0 for n=0,1,…,N, particularly for large N. For ease of notation we write T=\inf\{n\ge 0\,:\, S_n<0\} for the hitting time of the negative half-plane. Thus we are interested in S_n conditioned on T>N, or T=N, mindful that these might not be the same. We will also discuss briefly to what extent we can condition on T=\infty.

In the first paragraph, I said that this is a special case of conditioning SRW to lie above a line with fixed gradient. Fortunately, all the content of the general case is contained in the special case. We can repose the question of S_n conditioned to stay above n\alpha until step N by the question of S_n-n\alpha (which, naturally, has drift \mu-\alpha) conditioned to stay non-negative until step N, by a direct coupling.

Applications

Simple random walk is a perfectly interesting object to study in its own right, and this is a perfectly natural question to ask about it. But lots of probabilistic models can be studied via naturally embedded SRWs, and it’s worth pointing out a couple of applications to other probabilistic settings (one of which is the reason I was investigating this literature).

In many circumstances, we can desribe random trees and random graphs by an embedded random walk, such as an exploration process, as described in several posts during my PhD, such as here and here. The exploration process of a Galton-Watson branching tree is a particularly good example, since the exploration process really is simple random walk, unlike in, for example, the Erdos-Renyi random graph G(N,p), where the increments are only approximately IID. In this setting, the increments are given by the offspring distribution minus one, and the hitting time of -1 is the total population size of the branching process. So if the expectation of the offspring distribution is at most 1, then the event that the size of the tree is large is an atypical event, corresponding to delayed extinction. Whereas if the expectation is greater than one, then it is an event with limiting positive probability. Indeed, with positive probability the exploration process never hits -1, corresponding to survival of the branching tree. There are plenty of interesting questions about the structure of a branching process tree conditional on having atypically large size, including the spine decomposition of Kesten [KS], but the methods described in this post can be used to quantify the probability, or at least the scale of the probability of this atypical event.

In my current research, I’m studying a random walk embedded in a construction of the infinite-volume DGFF pinned at zero, as introduced by Biskup and Louidor [BL]. The random walk controls the gross behaviour of the field on annuli with dyadically-growing radii. Anyway, in this setting the random walk has Gaussian increments. (In fact, there is a complication because the increments aren’t exactly IID, but that’s definitely not a problem at this level of exposition.) The overall field is decomposed as a sum of the random walk, plus independent DGFFs with Dirichlet boundary conditions on each of the annuli, plus asymptotically negligible corrections from a ‘binding field’. Conditioning that this pinned field be non-negative up to the Kth annulus corresponds to conditioning the random walk to stay above the magnitude of the minimum of each successive annular DGFF. (These minima are random, but tightly concentrated around their expectations.)

Conditioning on \{T > N\}

When we condition on \{T>N\}, obviously the resulting distribution (of the process) is a mixture of the distributions we obtain by conditioning on each of \{T=N+1\}, \{T=N+2\},\ldots. Shortly, we’ll condition on \{T=N\} itself, but first it’s worth establishing how to relate the two options. That is, conditional on \{T>N\}, what is the distribution of T?

Firstly, when \mu>0, this event always has positive probability, since \mathbb{P}(T=\infty)>0. So as N\rightarrow\infty, the distribution of the process conditional on \{T>N\} converges to the distribution of the process conditional on survival. So we’ll ignore this for now.

In the case \mu\le 0, everything is encapsulated in the tail of the probabilities \mathbb{P}(T=N), and these tails are qualitatively different in the cases \mu=0 and \mu<0.

When \mu=0, then \mathbb{P}(T=N) decays polynomially in N. In the special case where S_n is simple symmetric random walk (and N has the correct parity), we can check this just by an application of Stirling’s formula to count paths with this property. By contrast, when \mu<0, even demanding S_N=-1 is a large deviations event in the sense of Cramer’s theorem, and so the probability decays exponentially with N. Mogulskii’s theorem gives a large deviation principle for random walks to lie above a line defined on the scale N. The crucial fact here is that the probabilistic cost of staying positive until N has the same exponent as the probabilistic cost of being positive at N. Heuristically, we think of spreading the non-expected behaviour of the increments uniformly through the process, at only polynomial cost once we’ve specified the multiset of values taken by the increments. So, when \mu<0, we have

\mathbb{P}(T\ge(1+\epsilon)N) \ll \mathbb{P}(T= N).

Therefore, conditioning on \{T\ge N\} in fact concentrates T on N+o(N). Whereas by contrast, when \mu=0, conditioning on \{T\ge N\} gives a nontrivial limit in distribution for T/N, supported on [1,\infty).

A related problem is the value taken by S_N, conditional on {T>N}. It’s a related problem because the event {T>N} depends only on the process up to time N, and so given the value of S_N, even with the conditioning, after time N, the process is just an unconditioned RW. This is a classic application of the Markov property, beloved in several guises by undergraduate probability exam designers.

Anyway, Iglehart [Ig2] shows an invariance principle for S_N | T>N when \mu<0, without scaling. That is S_N=\Theta(1), though the limiting distribution depends on the increment distribution in a sense that is best described through Laplace transforms. If we start a RW with negative drift from height O(1), then it hits zero in time O(1), so in fact this shows that conditonal on \{T\ge N\}, we have T= N +O(1) with high probability. When \mu=0, we have fluctuations on a scale \sqrt{N}, as shown earlier by Iglehart [Ig1]. Again, thinking about the central limit theorem, this fits the asymptotic description of T conditioned on T>N.

Conditioning on T=N

In the case \mu=0, conditioning on T=N gives

\left[\frac{1}{\sqrt{N}}S(\lfloor Nt\rfloor ) ,t\in[0,1] \right] \Rightarrow W^+(t), (*)

where W^+ is a standard Brownian excursion on [0,1]. This is shown roughly simultaneously in [Ka] and [DIM]. This is similar to Donsker’s theorem for the unconditioned random walk, which converges after rescaling to Brownian motion in this sense, or Brownian bridge if you condition on S_N=0. Skorohod’s proof for Brownian bridge [Sk] approximates the event \{S_N=0\} by \{S_N\in[-\epsilon \sqrt{N},+\epsilon \sqrt{N}]\}, since the probability of this event is bounded away from zero. Similarly, but with more technicalities, a proof of convergence conditional on T=N can approximate by \{S_m\ge 0, m\in[\delta N,(1-\delta)N], S_N\in [-\epsilon \sqrt{N},+\epsilon\sqrt{N}]\}. The technicalities here emerge since T, the first return time to zero, is not continuous as a function of continuous functions. (Imagine a sequence of processes f^N for which f^N(x)\ge 0 on [0,1] and f^N(\frac12)=\frac{1}{N}.)

Once you condition on T=N, the mean \mu doesn’t really matter for this scaling limit. That is, so long as variance is finite, for any \mu\in\mathbb{R}, the same result (*) holds, although a different proof is in general necessary. See [BD] and references for details. However, this is particularly clear in the case where the increments are Gaussian. In this setting, we don’t actually need to take a scaling limit. The distribution of Gaussian *random walk bridge* doesn’t depend on the mean of the increments. This is related to the fact that a linear transformation of a Gaussian is Gaussian, and can be seen by examining the joint density function directly.

Conditioning on T=\infty

When \mu>0, the event \{T=\infty\} occurs with positive probability, so it is well-defined to condition on it. When \mu\le 0, this is not the case, and so we have to be more careful.

First, an observation. Just for clarity, let’s take \mu<0, and condition on \{T>N\}, and look at the distribution of S_{\epsilon N}, where \epsilon>0 is small. This is approximately given by

\frac{S_{\epsilon N}}{\sqrt{N}}\stackrel{d}{\approx}W^+(\epsilon).

Now take \epsilon\rightarrow\infty and consider the RHS. If instead of the Brownian excursion W^+, we instead had Brownian motion, we could specify the distribution exactly. But in fact, we can construct Brownian excursion as the solution to an SDE:

\mathrm{d}W^+(t) = \left[\frac{1}{W^+(t)} - \frac{W^+(t)}{1-t}\right] \mathrm{d}t + \mathrm{d}B(t),\quad t\in(0,1) (**)

for B a standard Brownian motion. I might return in the next post to why this is valid. For now, note that the first drift term pushes the excursion away from zero, while the second term brings it back to zero as t\rightarrow 1.

From this, the second drift term is essentially negligible if we care about scaling W^+(\epsilon) as \epsilon\rightarrow 0, and we can say that W^+(\epsilon)=\Theta(\sqrt{\epsilon}).

So, returning to the random walk, we have

\frac{S_{\epsilon N}}{\sqrt{\epsilon N}}\stackrel{d}{\approx} \frac{W^+(\epsilon)}{\sqrt{\epsilon}} = \Theta(1).

At a heuristic level, it’s tempting to try ‘taking N\rightarrow\infty while fixing \epsilon N‘, to conclude that there is a well-defined scaling limit for the RW conditioned to stay positive forever. But we came up with this estimate by taking N\rightarrow\infty and then \epsilon\rightarrow 0 in that order. So while the heuristic might be convincing, this is not the outline of a valid argument in any way. However, the SDE representation of W^+ in the \epsilon\rightarrow 0 regime is useful. If we drop the second drift term in (**), we define the three-dimensional Bessel process, which (again, possibly the subject of a new post) is the correct scaling limit we should be aiming for.

Finally, it’s worth observing that the limit \{T=\infty\}=\lim_{N\rightarrow\infty} \{T>N\} is a monotone limit, and so further tools are available. In particular, if we know that the trajectories of the random walk satisfy the FKG property, then we can define this limit directly. It feels intuitively clear that random walks should satisfy the FKG inequality (in the sense that if a RW is large somewhere, it’s more likely to be large somewhere else). You can do a covariance calculation easily, but a standard way to show the FKG inequality applies is by verifying the FKG lattice condition, and unless I’m missing something, this is clear (though a bit annoying to check) when the increments are Gaussian, but not in general. Even so, defining this monotone limit does not tell you that it is non-degenerate (ie almost-surely finite), for which some separate estimates would be required.

A final remark: in a recent post, I talked about the Skorohod embedding, as a way to construct any centered random walk where the increments have finite variance as a stopped Brownian motion. One approach to conditioning a random walk to lie above some discrete function is to condition the corresponding Brownian motion to lie above some continuous extension of that function. This is a slightly stronger conditioning, and so any approach of this kind must quantify how much stronger. In Section 4 of [BL], the authors do this for the random walk associated with the DGFF conditioned to lie above a polylogarithmic curve.

References

[BD] – Bertoin, Doney – 1994 – On conditioning a random walk to stay nonnegative

[BL] – Biskup, Louidor – 2016 – Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field

[DIM] – Durrett, Iglehart, Miller – 1977 – Weak convergence to Brownian meander and Brownian excursion

[Ig1] – Iglehart – 1974 – Functional central limit theorems for random walks conditioned to stay positive

[Ig2] – Iglehart – 1974 – Random walks with negative drift conditioned to stay positive

[Ka] – Kaigh – 1976 – An invariance principle for random walk conditioned by a late return to zero

[KS] – Kesten, Stigum – 1966 – A limit theorem for multidimensional Galton-Watson processes

[Sk] – Skorohod – 1955 – Limit theorems for stochastic processes with independent increments

Large Deviations 6 – Random Graphs

As a final instalment in this sequence of posts on Large Deviations, I’m going to try and explain how one might be able to apply some of the theory to a problem about random graphs. I should explain in advance that much of what follows will be a heuristic argument only. In a way, I’m more interested in explaining what the technical challenges are than trying to solve them. Not least because at the moment I don’t know exactly how to solve most of them. At the very end I will present a rate function, and reference properly the authors who have proved this. Their methods are related but not identical to what I will present.

Problem

Recall the two standard definitions of random graphs. As in many previous posts, we are interested in the sparse case where the average degree of a vertex is o(1). Anyway, we start with n vertices, and in one description we add an edge between any pair of vertices independently and with fixed probability \frac{\lambda}{n}. In the second model, we choose uniformly at random from the set of graphs with n vertices and \frac{\lambda n}{2} edges. Note that if we take the first model and condition on the number of edges, we get the second model, since the probability of a given configuration appearing in G(n,p) is a function only of the number of edges present. Furthermore, the number of edges in G(n,p) is binomial with parameters \binom{n}{2} and p. For all purposes here it will make no difference to approximate the former by \frac{n^2}{2}.

Of particular interest in the study of sparse random graphs is the phase transition in the size of the largest component observed as \lambda passes 1. Below 1, the largest component has size on a scale of log n, and with high probability all components are trees. Above 1, there is a unique giant component containing \alpha_\lambda n vertices, and all other components are small. For \lambda\approx 1, where I don’t want to discuss what ‘approximately’ means right now, we have a critical window, for which there are infinitely many components with sizes on a scale of n^{2/3}.

A key observation is that this holds irrespective of which model we are using. In particular, this is consistent. By the central limit theorem, we have that:

|E(G(n,\frac{\lambda}{n}))|\sim \text{Bin}\left(\binom{n}{2},\frac{\lambda}{n}\right)\approx \frac{n\lambda}{2}\pm\alpha,

where \alpha is the error due to CLT-scale fluctuations. In particular, these fluctuations are on a scale smaller than n, so in the limit have no effect on which value of \lambda in the edge-specified model is appropriate.

However, it is still a random model, so we can condition on any event which happens with positive probability, so we might ask: what does a supercritical random graph look like if we condition it to have no giant component? Assume for now that we are considering G(n,\frac{\lambda}{n}),\lambda>1.

This deviation from standard behaviour might be achieved in at least two ways. Firstly, we might just have insufficient edges. If we have a large deviation towards too few edges, then this would correspond to a subcritical G(n,\frac{\mu n}{2}), so would have no giant components. However, it is also possible that the lack of a giant component is due to ‘clustering’. We might in fact have the correct number of edges, but they might have arranged themselves into a configuration that keeps the number of components small. For example, we might have a complete graph on Kn^{1/2} vertices plus a whole load of isolated vertices. This has the correct number of edges, but certainly no giant component (that is an O(n) component).

We might suspect that having too few edges would be the primary cause of having no giant component, but it would be interesting if clustering played a role. In a previous post, I talked about more realistic models of complex networks, for which clustering beyond the levels of Erdos-Renyi is one of the properties we seek. There I described a few models which might produce some of these properties. Obviously another model is to take Erdos-Renyi and condition it to have lots of clustering but that isn’t hugely helpful as it is not obvious what the resulting graphs will in general look like. It would certainly be interesting if conditioning on having no giant component were enough to get lots of clustering.

To do this, we need to find a rate function for the size of the giant component in a supercritical random graph. Then we will assume that evaluating this near 0 gives the LD probability of having ‘no giant component’. We will then compare this to the straightforward rate function for the number of edges; in particular, evaluated at criticality, so the probability that we have a subcritical number of edges in our supercritical random graph. If they are the same, then this says that the surfeit of edges dominates clustering effects. If the former is smaller, then clustering may play a non-trivial role. If the former is larger, then we will probably have made a mistake, as we expect on a LD scale that having too few edges will almost surely lead to a subcritical component.

Methods

The starting point is the exploration process for components of the random graph. Recall we start at some vertex v and explore the component containing v depth-first, tracking the number of vertices which have been seen but not yet explored. We can extend this to all components by defining:

S(0)=0, \quad S(t)=S(t-1)+(X(t)-1),

where X(t) is the number of children of the t’th vertex. For a single component, S(t) is precisely the number of seen but unexplored vertices. It is more complicated in general. Note that when we exhaust the first component S(t)=-1, and then when we exhaust the second component S(t)=-2 and so on. So in fact

S_t-\min_{0\leq s\leq t}S_s

is the number of seen but unexplored vertices, with \min_{0\leq s\leq t}S_s equal to (-1) times the number of components already explored up to time t.

Once we know the structure of the first t vertices, we expect the distribution of X(t) – 1 to be

\text{Bin}\Big(n-t-[S_t-\min_{0\leq s\leq t}S_s],\tfrac{\lambda}{n}\Big)-1.

We aren’t interested in all the edges of the random graph, only in some tree skeleton of each component. So we don’t need to consider the possibility of edges connecting our current location to anywhere we’ve previously visited (as such an edge would have been consider then – it’s a depth-first exploration), hence the -t. But we also don’t want to consider edges connecting our current location to anywhere we’ve seen, since that would be a surplus edge creating a cycle, hence the -S_s. It is binomial because by independence even after all this conditioning, the probability that there’s an edge from my current location to any other vertex apart from those discounted is equal to \frac{\lambda}{n} and independent.

For Mogulskii’s theorem in the previous post, we had an LDP for the rescaled paths of a random walk with independent stationary increments. In this situation we have a random walk where the increments do not have this property. They are not stationary because the pre-limit distribution depends on time. They are also not independent, because the distribution depends on behaviour up to time t, but only through the value of the walk at the present time.

Nonetheless, at least by following through the heuristic of having an instantaneous exponential cost for a LD event, then products of sums becoming integrals within the exponent, we would expect to have a similar result for this case. We can find the rate function \Lambda_\lambda^*(x)of latex \text{Po}(\lambda)-1$ and thus get a rate function for paths of the exploration process

I_\lambda(f)=\int_0^1 \Lambda_{(1-t-\bar{f}(t))\lambda}^*(f')dt,

where \bar{f}(t) is the height of f above its previous minimum.

Technicalities and Challenges

1) First we need to prove that it is actually possible to extend Mogulskii to this more general setting. Even though we are varying the distribution continuously, so we have some sort of ‘local almost convexity’, the proof is going to be fairly fiddly.

2) Having to consider excursions above the local minima is a massive hassle. We would ideally like to replace \bar{f} with f. This doesn’t seem unreasonable. After all, if we pick a giant component within o(n) steps, then everything considered before the giant component won’t show up in the O(n) rescaling, so we will have a series of macroscopic excursions above 0 with widths giving the actual sizes of the giant components. The problem is that even though with high probability we will pick a giant component after O(1) components, then probability that we do not do this decays only exponentially fast, so will show up as a term in the LD analysis. We would hope that this would not be important – after all later we are going to take an infimum, and since the order we choose the vertices to explore is random and in particular independent of the actual structure, it ought not to make a huge difference to any result.

3) A key lemma in the proof of Mogulskii in Dembo and Zeitouni was the result that it doesn’t matter from an LDP point of view whether we consider the linear (continuous) interpolation or the step-wise interpolation to get a process that actually lives in L_\infty([0,1]). In this generalised case, we will also need to check that approximating the Binomial distribution by its Poisson limit is valid on an exponential scale. Note that because errors in the approximation for small values of t affect the parameter of the distribution at larger times, this will be more complicated to check than for the IID case.

4) Once we have a rate function, if we actually want to know about the structure of the ‘typical’ graph displaying some LD property, we will need to find the infimum of the integrated rate function with some constraints. This is likely to be quite nasty unless we can directly use Euler-Lagrange or some other variational tool.

Answer

Papers by O’Connell and Puhalskii have found the rate function. Among other interesting things, we learn that:

I_{(1+\epsilon)}(0)\approx \frac{\epsilon^3}{6},

while the rate function for the number of edges:

-\lim\tfrac{1}{n}\log\mathbb{P}\Big(\text{Bin}(\tfrac{n^2}{2},\tfrac{1+\epsilon}{n})\leq\tfrac{n}{2}\Big)\approx \frac{\epsilon^2}{4}.

So in fact it looks as if there might be a significant contribution from clustering after all.

Large Deviations 5 – Stochastic Processes and Mogulskii’s Theorem

Motivation

In the previous posts about Large Deviations, most of the emphasis has been on the theory. To summarise briefly, we have a natural idea that for a family of measures supported on the same metric space, increasingly concentrated as some index grows, we might expect the probability of seeing values in a set not containing the limit in distribution to grow exponentially. The canonical example is the sample mean of a family of IID random variables, as treated by Cramer’s theorem.

It becomes apparent that it will not be enough to specify the exponent for a given large deviation event just by taking the infimum of the rate function, so we have to define an LDP topologically, with different behaviour on open and closed sets. Now we want to find some LDPs for more complicated measures, but which will have genuinely non-trivial applications. The key idea in all of this is that the infimum present in the definition of an LDP doesn’t just specify the rate function, it also might well give us some information about the configurations or events that lead to the LDP.

The slogan for the LDP as in Frank den Hollander’s excellent book is: “A large deviation event will happen in the least unlikely of all the unlikely ways.” This will be useful when our underlying space is a bit more complicated.

Setup

As a starting point, consider the set-up for Cramer’s theorem, with IID X_1,\ldots,X_n. But instead of investigating LD behaviour for the sample mean, we investigate LD behaviour for the whole set of RVs. There is a bijection between sequences and the partial sums process, so we investigate the partial sums process, rescaled appropriately. For the moment this is a sequence not a function or path (continuous or otherwise), but in the limit it will be, and furthermore it won’t make too much difference whether we interpolate linearly or step-wise.

Concretely, we consider the rescaled random walk:

Z_n(t):=\tfrac{1}{n}\sum_{i=1}^{[nt]}X_i,\quad t\in[0,1],

with laws \mu_n supported on L_\infty([0,1]). Note that the expected behaviour is a straight line from (0,0) to (1,\mathbb{E}X_1). In fact we can say more than that. By Donsker’s theorem we have a functional version of a central limit theorem, which says that deviations from this expected behaviour are given by suitably scaled Brownian motion:

\sqrt{n}\left(\frac{Z_n(t)-t\mathbb{E}X}{\sqrt{\text{Var}(X_1)}}\right)\quad\stackrel{d}{\rightarrow}\quad B(t),\quad t\in[0,1].

This is what we expect ‘standard’ behaviour to look like:

mog1 - Copy

The deviations from a straight line are on a scale of \sqrt{n}. Here are two examples of potential large deviation behaviour:

mog2 - Copy

Or this:

mog3 - Copy

Note that these are qualitatively different. In the first case, the first half of the random variables are in general much larger than the second half, which appear to have empirical mean roughly 0. In the second case, a large deviation in overall mean is driven by a single very large value. It is obviously of interest to find out what the probabilities of each of these possibilities are.

We can do this via an LDP for (\mu_n). Now it is really useful to be working in a topological context with open and closed sets. It will turn out that the rate function is supported on absolutely continuous functions, whereas obviously for finite n, none of the sample paths are continuous!

We assume that \Lambda(\lambda) is the logarithmic moment generating function of X_1 as before, with \Lambda^*(x) the Fenchel-Legendre transform. Then the key result is:

Theorem (Mogulskii): The measures (\mu_n) satisfy an LDP on L_\infty([0,1]) with good rate function:

I(\phi)=\begin{cases}\int_0^1 \Lambda^*(\phi'(t))dt,&\quad \text{if }\phi\in\mathcal{AC}, \phi(0)=0,\\ \infty&\quad\text{otherwise,}\end{cases}

where AC is the space of absolutely continuous functions on [0,1]. Note that AC is dense in L_\infty([0,1]), so any open set contains a \phi for which I(\phi) is at least in principle finite. (Obviously, if \Lambda^* is not finite everywhere, then extra restrictions of \phi' are required.)

The following picture may be helpful at providing some motivation:

CptPath2

So what is going on is that if we take a path and zoom in on some small interval around a point, note first that behaviour on this interval is independent of behaviour everywhere else. Then the gradient at the point is the local empirical mean of the random variables around this point in time. The probability that this differs from the actual mean is given by Cramer’s rate function applied to the empirical mean, so we obtain the rate function for the whole path by integrating.

More concretely, but still very informally, suppose there is some \phi'(t)\neq \mathbb{E}X, then this says that:

Z_n(t+\delta t)-Z_n(t)=\phi'(t)\delta t+o(\delta t),

\Rightarrow\quad \mu_n\Big(\phi'(t)\delta t+o(\delta t)=\frac{1}{n}\sum_{i=nt+1}^{n(t+\delta t)}X_i\Big),

= \mu_n\Big( \phi'(t)+o(1)=\frac{1}{n\delta t}\sum_{i=1}^{n\delta t}X_i\Big)\sim e^{-n\delta t\Lambda^*(\phi'(t))},

by Cramer. Now we can use independence:

\mu_n(Z_n\approx \phi)=\prod_{\delta t}e^{-n\delta t \Lambda^*(\phi'(t))}=e^{-\sum_{\delta t}n\delta t \Lambda^*(\phi'(t))}\approx e^{-n\int_0^1 \Lambda^*(\phi'(t))dt},

as in fact is given by Mogulskii.

Remarks

1) The absolutely continuous requirement is useful. We really wouldn’t want to be examining carefully the tail of the underlying distribution to see whether it is possible on an exponential scale that o(n) consecutive RVs would have sum O(n).

2) In general \Lambda^*(x) will be convex, which has applications as well as playing a useful role in the proof. Recalling den Hollander’s mantra, we are interested to see where infima hold for LD sets in the host space. So for the event that the empirical mean is greater than some threshold larger than the expectation, Cramer’s theorem told us that this is exponentially the same as same the empirical mean is roughly equal to the threshold. Now Mogulskii’s theorem says more. By convexity, we know that the integral functional for the rate function is minimised by straight lines. So we learn that the contributions to the large deviation are spread roughly equally through the sample. Note that this is NOT saying that all the random variables will have the same higher than expected value. The LDP takes no account of fluctuations in the path on a scale smaller than n. It does however rule out both of the situations pictured a long way up the page. We should expect to see roughly a straight line, with unexpectedly steep gradient.

3) The proof as given in Dembo and Zeitouni is quite involved. There are a few stages, the first and simplest of which is to show that it doesn’t matter on an exponential scale whether we interpolate linearly or step-wise. Later in the proof we will switch back and forth at will. The next step is to show the LDP for the finite-dimensional problem given by evaluating the path at finitely many points in [0,1]. A careful argument via the Dawson-Gartner theorem allows lifting of the finite-dimensional projections back to the space of general functions with the topology of pointwise convergence. It remains to prove that the rate function is indeed the supremum of the rate functions achieved on projections. Convexity of \Lambda^*(x) is very useful here for the upper bound, and this is where it comes through that the rate function is infinite when the comparison path is not absolutely continuous. To lift to the finer topology of L_\infty([0,1]) requires only a check of exponential tightness in the finer space, which follows from Arzela-Ascoli after some work.

In conclusion, it is fairly tricky to prove even this most straightforward case, so unsurprisingly it is hard to extend to the natural case where the distributions of the underlying RVs (X) change continuously in time, as we will want for the analysis of more combinatorial objects. Next time I will consider why it is hard but potentially interesting to consider with adaptations of these techniques an LDP for the size of the largest component in a sparse random graph near criticality.