# Coupling from the Past

In a long series of previous posts I have talked about mixing times for Markov chains. We consider how long it takes for the distribution of a particular Markov chain to approach equilibrium. We are particularly interested in the asymptotics when some parameter of the model grows, such as the size of the state space, grows to infinity.

But why are we interested in the underlying problem? The idea of Markov Chain Monte Carlo methods is to sample from an intractable distribution by instead sampling from a Markov chain which approximates the distribution well at large times. A distribution might be intractable because it is computationally demanding to work out the normalising constant, or it might be distributed uniformly on a complicated combinatorial set. If, however, the distribution is the equilibrium distribution of some Markov chain, then we know how to at least sample from a distribution which is close to the one we want. But we need to know how long to run the process. We will typically tolerate some small error in approximating the distribution (whether we measure this in terms of total variation distance or some other metric doesn’t really matter at this heuristic level), but we need to know how it scale. If we double the size of the system, do we need to double the number of iterations of the chain, or square it. This is really important if we are going to use this for large real-world models with finite computing power!

Sometimes though, an approximation is not enough. If we want an exact sample from the equilibrium distribution, Markov chains typically will not help us as it is only in very artificial examples that the distribution after some finite time is actually the equilibrium distribution. One thing that we might use is a stationary time, which is a stopping time T, for which $X_T\stackrel{d}{=}\pi$. Note that there is one trivial way to do this. We can sample Y from distribution $\pi$ before starting the process, then stop X at the first time T for which $X_T=Y$. But this is no help really, as we need to have Y in the first place!

So we are really interested in less trivial stationary times. Perhaps the best example is the top-to-random shuffle. Here we are given a pack of labelled cards, WLOG initially in descending order at each step we move the top card in the pile to a randomly-chosen location in the pile (which includes back onto the top). Then it turns out that the first time we move the card originally at the bottom from the top to somewhere is a strong stationary time. This is fairly natural, as by this time, every card has been involved in at least one randomising event.

Anyway, so this gives a somewhat artificial way to sample from the uniform distribution on a pack of cards. This strong stationary time is almost surely finite, with distribution given by the coupon collector problem, for which the expectation grows as $n\log n$, where n is the number of cards.

The problem with this method is that it is not easy in general to come up with a non-contrived stationary time such as this one. The idea of coupling from the past, discussed by some previous authors but introduced in this context by Propp and Wilson in the mid ’90s, is another method to achieve perfect sampling from the equilibrium distribution of a Markov chain. The idea here is to work backwards rather than forwards. The rest of this post, which discusses this idea, is based on the talk given at the Junior Probability Seminar by Irene, and on the chapter in the Levin, Peres, Wilmer book.

The key to the construction is a coupling of the transitions of a Markov chain. In the setting of a simple random walk, we have by construction a coupling of the transitions. It doesn’t matter which state we are at: we toss a coin to decide whether to move up or down, and we can do this without reference to our current position. Levin, Peres and WIlmer call this a random mapping representation in general, and it is yet another concept that is less scary than its definition might suggest.

Given a transition matrix P on state space S, such a representation is a function

$\phi: S\times[0,1]\rightarrow S,\text{ s.t. }\mathbb{P}(\phi(i,U)=j)=p_{ij},$

where U is a U(0,1) random variable independent of choice of i. In particular, once we have the random value of u, we can consider $\phi(i,u)$ as i varies, to obtain a random map $S\rightarrow S$. Crucially, this map is not necessarily a bijection.

Note first that there are many possibilities for constructing the representation $\phi$. For some chains, and some representations, in particular random walks on vertex-transitive graphs (such as SRW – only for now we are restricting attention to finite state spaces) it is possible to choose $\phi$ so that it always gives a bijection, but it is also always possible to choose it so that there is some probability it doesn’t give a bijection.

Let $U_1,U_2,\ldots$ be an IID sequence of U[0,1] random variables, and write $\phi_i$ for the random map induced by $U_i$. Then consider the sequence of iterated maps:

$\phi_1, \phi_1\circ \phi_2, \ldots, \phi_1\circ\ldots\circ\phi_n,$

and let T be the (random) smallest time such that the image of $\phi_1\circ\ldots\circ \phi_T$ is a single state. Ie, as we go backwards in time through the maps $\phi_i$, we are gradually losing various states, corresponding to the maps not being bijections. Since the state space is finite, and the probability of not being a bijection is positive, it can be shown that T is almost surely finite. The claim then is that

$Y=\text{Im}(\phi_1\circ\ldots\circ \phi_T)$

is distributed as the equilibrium distribution of the chain. We finish by proving this.

Proof: Since the algorithm terminates after finite time almost surely, given any $\epsilon>0$, we can choose N such that the probability the algorithm stops in at most N steps is greater than $1-\epsilon$.

Now run the Markov chain from time -N, started in the equilibrium distribution, with the transition from time -t to -(t-1) given by the random mapping driven by $U_t$. Thus at time 0, the distribution of the chain is still the equilibrium distribution. But if we condition on the event that $T\le N$, then $X_0=\phi_1\circ \ldots \circ\phi_n(X_{-N})=Y$ regardless of the initial value. So $\mathbb{P}(X_0\ne Y)<\epsilon$, and hence the result follows, since $\epsilon>0$ was arbitrary.

What makes this easier than strong stationary times is that we don’t have to be clever to come up with the stopping time. It is however still important to know how long on average it takes to run the algorithm. At the end of her talk, Irene showed how to adapt this algorithm to deal with Probabilistic Cellular Automata. Roughly speaking, these are a sequence of infinite strings of 0s and 1s. The value of some element is determined randomly as a function of the values in the row underneath, say the element directly underneath and the two either side. In that setting, if you start with a finite subsequence and couple from the past by looking down to lower rows, each time you drop down a row you consider one further element, so in fact the coupling from the past algorithm has to eliminate possibilities fast enough to make up for this, if we want to terminate almost surely in finite time.

Here’s a link to the paper which discusses this in fuller detail.

# Mixing Times 5 – Cesaro Mixing

We have just finished discussing chapters 11 and 12 of Markov Chains and Mixing Times, the end of the ‘core material’. I thought that, rather than addressing some of the more interesting but technical spectral methods that have just arisen, it would be a good subject for a quick post to collate some of the information about Cesaro mixing, which is spread throughout this first section.

Idea

A main result in the introductory theory of Markov chains is that for an irreducible aperiodic chain X, the distribution of $X_t\rightarrow \pi$, the (unique) equilibrium distribution. The mixing time gives the rate at which this first mode of convergence takes place. We have freedom over the initial state, so we typically consider the ‘worst case scenario’, ie the slowest convergence. The most appropriate metric is given by the total variation distance, which is defined in previous posts. The most important point to note is that the mixing time should be thought of as the correct timescale for convergence, rather than some threshold. In particular, the time at which the chain is within 1/4 of the equilibrium distribution in the TV metric has the same order magnitude (in n, some parameter controlling the number of states) as the time at which it is within 1/20 of the equilibrium distribution.

But this isn’t the only result about convergence in distribution of functionals of Markov chains. Perhaps more intuitive is the ergodic theorem which asserts that the proportion of time spent in a particular state also converges to the equilibrium probability as time advances. We might write:

$\frac{1}{t}\sum_t \mathbf{1}(X_t=x)\rightarrow \pi(x),\quad \forall x\in \Omega.$

Note that if the state space $\Omega$ is finite, then we can also assume that this occurs uniformly in x. We can also think of the LHS of this convergence as a measure on $\Omega$ varying in time

$\frac{1}{t}\sum_t \mathbf{1}(X_t=\cdot),$

and the mixing time for this sequence of measures is defined as for the conventional mixing time, and is called the Cesaro mixing time, at least in the Levin / Peres / Wilmer text.

There are some obvious advantages to considering Cesaro mixing. Principally, a main drawback of conventional mixing is that we are unable to consider periodic chains. This property was the main content of the previous post, but to summarise, if a chain switches between various classes in a partition of the state space in a deterministic periodic way, then the distribution does not necessarily converge to equilibrium. The previous post discusses several ways of resolving this problem in specific cases. Note that this problem does not affect Cesaro mixing as the ergodic theorem continues to hold in the periodic case. Indeed the form of the distribution (which we might call an occupation measure in some contexts) confirms the intuition about viewing global mixing as a sort of sum over mixing modulo k in time.

Other advantages include the fact that the dependence on the initial state is weaker. For instance, consider the occupation measures for a chain started at x which moves first to y, versus a chain which starts at y then proceeds as the original. It requires very little thought to see that for O(1) values of t, this difference in occupation measures between these chains becomes small.

Another bonus is that we can use so-called stationary times to control Cesaro mixing. A stationary time is a stopping time such that $X_\tau\stackrel{d}{=}\pi$. It is clear that if we wait until $\tau$, then run the chain for a further $\alpha\tau$, the chain will have spent $\frac{\alpha}{1+\alpha}$ of its duration in the equilibrium distribution, and so using Markov’s inequality and bounding the total variation distance between occupation measure and $\pi$ by 1 up until the stationary time, we can get good bounds for the Cesaro mixing time in terms of $\mathbb{E}\tau$.

Why does this fail to work for normal mixing? The key to the above argument was that by taking an average over time up to some $T>>\tau$, the dependence on the actual value of $X_\tau$ was suppressed. Consider the deterministic walk on the cycle $\mathbb{Z}_n$, which advances by 1 modulo n on each go. Now sample independently a random variable Z distributed uniformly on $\mathbb{Z}_n$. By definition, the random hitting time $\tau_Z$ is a stationary time, but in fact the chain’s distribution does not converge. The condition we actually require for normal mixing is that $\tau$ be a strong stationary time, meaning that $X_\tau\stackrel{d}{=}\pi$, and the value of $X_\tau$ is independent of $\tau$. With this definition we can proceed with a similar result for normal mixing. An example of a strong stationary time would be for shuffling a pack of cards by repeatedly inserting the top card into a random place in the rest of the pile. Then consider the moment at which the original bottom card first reaches the top of the pile. It does not take too much to reassure oneself that after the next move, we have a strong stationary time, since every card has been randomised at least once, and the position of the other cards is independent of how long it took the original bottom card to rise to the top.

So why do we not consider Cesaro mixing rather than the conventional variety? Well, mainly because of how we actually use mixing times. The Metropolis algorithm gives a way to generate chains with a particular equilibrium distribution, including ones for which it is hard to sample directly. Mixing time theory then gives a quantitative answer to the question of how long it is necessary to run such a chain for before it gives a good estimate to the equilibrium distribution. In many cases, such a random walk on a large unknown network, the main aim when applying such Monte Carlo procedures is to minimise the difficulty of calculation. For Cesaro mixing, you have to store all the information about path states, while for conventional mixing you only care about your current location.

The other phenomenon that is lacking in Cesaro mixing is cutoff. This is where the total variation distance

$d_n(t)=||P^t(x,\cdot)-\pi||_{TV}$

converges to 0 suddenly. More formally, there is some timescale f(n) such that

$\lim_{n\rightarrow\infty}d_n(cf(n))=\begin{cases}1& c<1\& c>1,\end{cases}$

so in the n-limit, the graph of d looks like a step-function. Several of the shuffling chains exhibit this property, leading to the statements like “7 shuffles are required to mix a standard pack of cards”. Cesaro mixing smooths out this effect on an f(n) timescale.

A Further Example

Perhaps the best example where Cesaro mixing happens faster than normal mixing is in the case of a lazy biased random walk on $\mathbb{Z}_n$. (Ex. 4.10 in MTMC) Here, we stay put with probability 1/2, otherwise move clockwise with probability p>1/4 and counter-clockwise with probability 1/2 – p < 1/4. This chain is not reversible, as we can determine the direction (or arrow) of time by examining a path. Roughly speaking, the chain will drift clockwise at rate 2p – 1/2 > 0. In particular, at some time Kn, where K is large, we would expect to have completed ~ $\frac{K}{2p-\frac12}$ circuits of the vertices, and so the occupation measure will be close to the uniform equilibrium distribution if we choose K large enough.

On the other hand, the distribution of X at time Kn is still fairly concentrated. If we assume we are instead performing the random walk on $\mathbb{Z}$, the distribution after Kn i.i.d. increments is

$X_t\sim N(Kn(2p-\frac12), Kn\sigma^2).$

That is, the standard deviation is $O(\sqrt{n})<. So, even once we return to considering the random walk on the cyclic group, if we view it as a circle, we expect most of the probability mass to be concentrated near $Kn(2p-\frac12) \mod n$. By an identical heuristic argument, we see that the mixing time is achieved when the variance has order n, that is when time has order $n^2$.

# Mixing Times 2 – Metropolis Chains

In our second reading group meeting for Mixing Times of Markov Chains, we reviewed chapters 3 and 4 of the Levin, Peres and Wilmer book. This post and the next contains a couple of brief thoughts about the ideas I found most interesting in each chapter.

Before reading chapter 3, the only thing I really knew about Monte Carlo methods was the slogan. If you want to sample from a probability distribution that you can’t describe explicitly, find a Markov chain which has that distribution as an equilibrium distribution, then run it for long enough starting from wherever you fancy. Then the convergence theorem for finite Markov chains means that the state of the chain after a long time approximates well the distribution you were originally looking for.

On the one previous occasion I had stopped and thought about this, I had two questions which I never really got round to answering. Firstly, what sort of distributions might you not be able to simulate directly? Secondly, and perhaps more fundamentally, how would you go about finding a Markov chain for which a given distribution is in equilibrium?

In the end, the second question is the one answered by this particular chapter. The method is called a Metropolis chain, and the basic idea is that you take ANY Markov chain with appropriate state space, then fiddle with the transition probabilities slightly. The starting chain is called a base chain. It is completely possible to adjust the following algorithm for a general base chain, but for simplicity, let’s assume it is possible to take an irreducible chain for which the transition matrix is symmetric. By thinking about the DBEs, this shows that the uniform distribution is the (unique) equilibrium distribution. Suppose the  transition matrix is given by $\Psi(x,y)$, to copy notation from the book. Then set:

$P(x,y)=\begin{cases}\Psi(x,y)\left[1\wedge \frac{\pi(y)}{\pi(x)}\right]&y\neq x\\ 1-\sum_{z\neq x} \Psi(x,z)\left [1\wedge \frac{\pi(z)}{\pi(x)}\right]& y=x.\end{cases}$

Note that this second case (y=x) is of essentially no importance. It just confirms that the rows of P add to 1. It is easy to check from the DBEs that $\pi$ is the equilibrium distribution of matrix P. One way to think of this algorithm is that we run the normal chain, but occasionally suppress transitions is they involve a move from a state which is likely (under $\pi$), to one which is less likely. This is done in proportion to the ratio, so it is unsurprising perhaps that the limit in distribution is $\pi$.

Conveniently, this algorithm also gives us some ideas for how to answer the first question. Note that at no point do we need to know $\pi(x)$ for some state x. We only need to use $\frac{\pi(x)}{\pi(y)}$ the ratios of probabilities. So this is perfect for distributions where there is a normalising constant which is computationally taxing to evaluate. For example, in the Ising model and similar statistical physics objects, probabilities are viewed more as weightings. There is a normalising constant, often called the partition function Z in this context, lying in the background, but especially the underlying geometry is quite exotic we definitely don’t want to have to worry about actually calculating Z. Thus we have a way to generate samples from such models. The other classic example is a random walk on a large, perhaps unknown graph. Then the equilibrium distribution at a vertex is inversely proportional to the degree of that vertex, but again you might not know about this information over the entire graph. It is reasonable to think of a situation where you might be able to take a random walk on a graph, say the connectivity graph of the internet, without knowing about all the edges at any one time. So, even though you potentially explore everywhere, you only need to know a small amount at any one time.

Of course, the drawback of both of these examples is that a lack of knowledge about the overall system means that it is hard in general to know how many steps the Metropolis chain must run before we can be sure that we are the equilibrium distribution it has been constructed to approach. So, while these chains are an excellent example to have in mind while thinking about mixing times, they are also a good motivation for the subject itself. General rules about speed of convergence to equilibrium are precisely what are required to make such implementation concrete.