Poisson Random Measures

[This is a companion to the previous post. They explore different aspects of the same problem which I have been thinking about from a research point of view. So that they can be read independently, there has inevitably been some overlap.]

As I explained in passing previously, Poisson Random Measures have come up in my current research project. Indeed, the context where they have appeared seems like a very good motivation for considering the construction and some properties of PRMs.

We begin not with a Poisson variable, but with a standard Erdos-Renyi random graph G(n,\frac{c}{n}). The local limit of a component in this random graph is given by a Galton-Watson branching process with Poisson(c) offspring distribution. Recall that a local limit is description of what the structure looks like near a given (or random) vertex. Since the vertices in G(n,p) are exchangeable, this rooting matters less. Anyway, the number of neighbours in the graph of our root is given by Bin(n-1,c/n). Suppose that the root v_0, has k neighbours. Then if we are just interested in determining the vertices in the component, we can ignore the possibility of further edges between these neighbours. So if we pick one of the neighbours of the root, say v_1, and count the number of neighbours of this vertex that we haven’t already considered, this is distributed as Bin(n-1-k,c/n), since we discount the root and the k neighbours of the root.

Then, as n grows large, Bin(n-1,c/n) converges in distribution to Po(c). Except on a very unlikely event whose probability we can control if we need, so does Bin(n-1-k,c/n). Indeed if we consider a set of K vertices which are already connected in some way, then the distribution of the number of neighbours of one of them which we haven’t already considered is still Po(c) in the limit.

Now we consider what happens if we declare the graph to be inhomogeneous. The simplest possible way to achieve this is to specify two types of vertices, say type A and type B. Then we specify the proportion of vertices of each type, and the probability that there is an edge between two vertices of given types. This is best given by a symmetric matrix. So for example, if we wanted a random bipartite graph, we could achieve this as described by setting all the diagonal entries of the matrix to be zero.

So does the local limit extend to this setting? Yes, unsurprisingly it does. To be concrete, let’s say that the proportion of types A and B are a and b respectively, and the probabilities of having edges between vertices of various types is given by P=(p_{ij}/n)_{i,j\in\{A,B\}}. So we can proceed exactly as before, only now we have to count how many type A neighbours and how many type B neighbours we see at all stages. We have to specify the type of our starting vertex. Suppose for now that it is type A. Then the number of type A neighbours is distributed as

\text{Bin}(an,p_{AA}/n)\stackrel{d}{\rightarrow}\text{Po}(ap_{AA}),

and similarly the limiting number of type B neighbours is \sim \text{Po}(bp_{AB}). Crucially, this is independent of the number of type A neighbours. The argument extends naturally to later generations, and the result is exactly a multitype Galton-Watson process as defined in the previous post.

My motivating model is the forest fire. Here, components get burned when they are large and reduced to singletons. It is therefore natural to talk about the ‘age’ of a vertex, that is, how long has elapsed since it was last burned. If we are interested in the forest fire process at some fixed time T>1, that is, once burning has started, then we can describe it as an inhomogeneous random graph, given that we know the ages of the vertices.

For, given two vertices with ages s and t, where WLOG s<t, we know that the older vertex could not have been joined to the other vertex between times T-t and T-s. Why? Well, if it had, then it too would have been burned at time T-s when the other vertex was burned. So the only possibility is that they might have been joined by an edge between times T-s and T. Since each edge arrives at rate 1/n, the probability that this happens is 1-e^{-s/n}\approx \frac{s}{n}. Indeed, in general the probability that two vertices of ages s and t are joined at time T is \frac{s\wedge t}{n}.

Again at fixed time T>1, the sequence of ages of the vertices converges weakly to some fixed distribution (which depends on T) as the number of vertices grows to infinity. We can then recover the graph structure by assigning ages according to this distribution, then growing the inhomogeneous random graph with the kernel as described. The question is: when we look for a local limit, how to do we describe the offspring distribution?

Note that in the limit, components will be burned continuously, so the distribution of possible ages is continuous (with an atom at T for those vertices which have never been burned). So if we try to calculate the distribution of the number of neighbours of age s, we are going to be doomed, because with probability 1 then is no vertex of age s anywhere!

The answer is that the offspring distribution is given by a Poisson Random Measure. You can think of this as a Poisson Point Process where the intensity is non-constant. For example, let us consider how many neighbours we expect to have with ages [s,s+ds]. Let us suppose the age of our root is t>s+ds for now. Assuming the distribution of ages, f(\cdot) is positive and continuous, the number of vertices with these ages in the system is roughly nf(s)ds, and so the number of neighbours with this property is roughly \text{Bin}(nf(s)ds,\frac{s}{n}). In particular, this does have a Poisson limit. We need to be careful about whether this Poisson limit is preserved by the approximation. In fact this is fine. Let’s assume WLOG that f is increasing at s. Then the number of age [s,s+ds] neighbours can be stochastically bounded between \text{Bin}(nf(s)ds,\frac{s}{n}) and \text{Bin}(nf(s+ds)ds,\frac{s+ds}{n}. As n grows, these converge in the distribution to two Poisson random variables, and then we can let ds go to zero. Note for full formalism, we may need to account for the large deviations event that the number of age s vertices in the system is noticeably different from its expectation. Whether this is necessary depends on whether the ages are assigning deterministically, or drawn IID-ly from f.

One important result to be drawn from this example is that the number of offspring from disjoint type sets, say [s_1,s_2], [t_1,t_2] are independent, for the same reason as in the two-type setting, namely that the underlying binomial variables are independent. We are, after all, testing different sets of vertices! The other is that the number of neighbours with ages in some range is Poisson. Notice that these two results are consistent. The number of neighbours with ages in the set [s_1,s_2]\cup [t_1,t_2] is given by the sum of two independent Poisson RVs, and hence is Poisson itself. The parameter of the sum RV is given by the sum of the original parameters.

These are essentially all the ingredients required for the definition of a Poisson Random Measure. Note that the set of offspring is a measure of the space of ages, or types. (Obviously, this isn’t a probability measure.) We take a general space E, with sigma algebra \mathcal{E}, and an underlying measure \mu on E. We want a distribution \nu for measures on E, such that for each Borel set A\in\mathcal{E}, \nu(A), which is random because \nu is, is distributed as \text{Po}(\mu(A)), and furthermore, for disjoint A,B\in\mathcal{E}, the random variables \nu(A),\nu(B) are independent.

If M=\mu(E)<\infty, then constructing such a random measure is not too hard using a thinning property. We know that \nu(E)\stackrel{d}{=}\text{Po}(M), and so if we sample a Poisson(M) number of RVs with distribution given by \frac{\mu(\cdot)}{M}, we get precisely the desired PRM. Proving this is the unique distribution with this property is best done using properties of the Laplace transform, which uniquely defines the law of a random measure in the same manner that the moment generating function defines the law of a random variable. Here the argument is a function, rather than a single variable for the MGF, reflecting the fact that the space of measures is a lot ‘bigger’ than the reals, where a random variable is supported. We can extend this construction for sigma-finite spaces, that is some countable union of finite spaces.

One nice result about Poisson random measures concerns the expectation of functions evaluated at such a random measure. Recall that some function f evaluated at the measure \sum \delta_{x_i} is given by \sum f(x_i). Then, subject to mild conditions on f, the expectation

\mathbb{E}\nu (f)=\mu(f).

Note that when f=1_A, this is precisely one of the definitions of the PRM. So by a monotone class result, it is not surprising that this holds more generally. Anyway, I’m currently trying to use results like these to get some control over what the structure of this branching processes look like, even when the type space is continuous as in the random graph with specified ages.

Enhanced by Zemanta

Characterisations of Geometric Random Graphs

Continuing the LMS-EPSRC summer school on Random Graphs, Geometry and Asymptotic Structure, we’ve now had three of the five lectures by Mathew Penrose on Geometric Random Graphs.

The basic idea is that instead of viewing a graph entirely abstractly, we now place the vertices in the plane, or some other real space. In many network situations, we would expect connectivity to depend somehow on distance. Agents or sites which are close together might be considered more likely to have the sort of relationship indicated by being connected with an edge. In the model discussed in this course, this dependence is deterministic. We have some parameter r, and once we have chosen the location of all the vertices, we connect a pair of vertices if the distance between them is less than r.

For the purposes of this, we work in a compact space [0,1]^d, and we are interested in the limit as the number of vertices n grows to infinity. To avoid the graph getting too connected, as in the standard random graph model, we take r to be a decreasing function of n. Anyway, we place the n points into the unit hypercube uniformly at random, and then the edges are specified by the adjacency rule above. In general, because r_n will be o(1), we won’t have to worry too much above boundary effects. The number of vertices within r_n of the boundary of the cube will be o(1). For some results, this is a genuine problem, when it may be easier to work on the torus.

In G(n,p), the order of np in the limit determines the qualitative structure of the graph. This is the expected degree of a given fixed vertex. In this geometric model, the relevant parameter is nr_n^d, where d is the dimension of the hypercube. If this parameter tends to 0, we say the graph is sparse, and dense if it tends to infinity. The intermediate case is called a thermodynamic limit. Note that the definition of sparse here is slightly different from G(n,p).

Much of the content of the first three lectures has been verifying that the distributions of various quantities in the graph, for example the total number of edges, are asymptotically Poisson. Although sometimes arguments are applicable over a broad spectrum, we also sometimes have to use different calculations for different scaling windows. For example, it is possible to show convergence to a Poisson distribution for the number of edges in the sparse case, from which we get an asymptotic normal approximation almost for free. In the denser regimes, the argument is somewhat more technical, with some substantial moment calculations.

A useful tool in these calculations are some bounds derived via Stein’s method for sums of ‘almost independent’ random variables. For example, the presence or non-presence of an edge between two pairs of vertices are independent in this setting if the pairs are disjoint, and the dependence is still only mild if they share a vertex. An effective description is via a so-called dependency graph, where we view the random variables as the vertices of a graph, with an edge between them if there is some dependence. This description doesn’t have any power in itself, but it does provide a concise notation for what would otherwise be very complicated, and we are able to show versions of (Binomials converge to Poisson) and CLT via these that are exactly as required for this purpose.

In particular, we are able to show that if E_n is the total number of edges, under a broad set of scaling regimes, if \lambda_n is the expected total number of edges, then d_{TV}(E_n,\mathrm{Po}(\lambda_n))\rightarrow 0, as n grows. This convergence in total variation distance is as strong a result as one could hope for, and when the sequence of \lambda_n is O(1), we can derive a normal approximation as well.

At this point it is worth discussing an alternative specification of the model. Recall that for a standard homogenous random graph, we have the choice of G(n,m) and G(n,p) as definitions. G(n,m) is the finer measure, and G(n,p) can be viewed as a weighted mix of G(n,m). We can’t replicate this directly in the geometric setting because the edges and non-edges are a deterministic function of the vertex locations. What we can randomise is the number of vertices. Since we are placing the vertices uniformly at random, it makes sense to consider as an alternative a Poisson Point Process with intensity n. The number of vertices we get overall will be distributed as Po(n), which is concentrated near n, in the same manner as G(n,c/n).

As in G(n,p), this is a less basic model because it is a mixture of the fixed-vertex models. Let’s see if how we would go about extending the total variation convergence result to this slightly different setting without requiring a more general version of the Poisson Approximation Lemma. To avoid having to define everything again, we add a ‘ to indicate that we are talking about the Poisson Point Process case. Writing d(.,.) for total variation distance, the result we have is:

\lim_{n\rightarrow\infty} d(E_n,\mathrm{Po}(\lambda_n))=0.

We want to show that

\lim_{n\rightarrow\infty}d(E_n',\mathrm{Po}(\lambda_n'))=0,

which we can decompose in terms of expectations in the original model by conditioning on N_n

\leq \lim_{n\rightarrow\infty}\mathbb{E}\Big[\mathbb{E}[d(E_{N_n},\mathrm{Po}(\lambda_n')) | N_n]\Big],

where the outer expectation is over N. The observation here, is that the number of points given by the Poisson process induces a measure on distributions, the overwhelming majority of which look quite like Poisson distributions with parameter n. The reason we have a less than sign is that we are applying the triangle inequality in the sum giving total variation distance:

d(X,Y)=\sum_{k\geq 0}|\mathbb{P}(X=k)-\mathbb{P}(Y=k)|.

From this, we use the triangle inequality again:

\lim_{n\rightarrow\infty} \mathbb{E}\Big[\mathbb{E}[d(E_{N_n},\mathrm{Po}(\lambda_{N_n})) | N_n]\Big]

+\lim_{n\rightarrow\infty}\mathbb{E}\Big[\mathbb{E}[d(\mathrm{Po}(\lambda_{N_n}),\mathrm{Po}(\lambda_n')) | N_n]\Big].

Then, by a large deviations argument, we have that for any \epsilon>0, \mathbb{P}(|N_n-n|\geq \epsilon n)\rightarrow 0 exponentially in n. Also, total variation distance is, by definition, bounded above by 1. In the first term, the inner conditioning on N_n is irrelevant, and we have that E_{N_n} converges to the Poisson distribution for any fixed N_n\in (n(1-\epsilon),n(1+\epsilon)). Furthermore, we showed in the proof of the non-PPP result that this convergence is uniform in this interval. (This is not surprising – the upper bound is some well-behaved polynomial in 1/n.) So with probability 1- e^{-\Theta(n)} N_n is in the region where this convergence happens, and elsewhere, the expected TV distance is bounded below 1, so the overall expectation tends to 0. With a similar LD argument, for the second term it suffices to prove that when \lambda\rightarrow\mu, we must have d(\mathrm{Po}(\lambda),\mathrm{Po}(\mu))\rightarrow 0. This is ‘obviously’ true. Formally, it is probably easiest to couple the distributions \mathrm{Bin}(n,\lambda/n),\mathrm{Bin}(n,\mu/n) in the obvious way, and carry the convergence of TV distance as the parameter varies through the convergence in n.

That all sounded a little bit painful, but is really just the obvious thing to do with each term – it’s only the language that’s long-winded!

Anyway, I’m looking forward to seeing how the course develops. In particular, when you split the space into small blocks, the connectivity properties resemble those of (site) percolation, so I wonder whether there will be concrete parallels. Also, after reading about some recent results concerning the metric structure of the critical components in the standard random graph process, it will be interesting to see how these compare to the limit of a random graph process which comes equipped with metric structure for free!

SLE Revision 4: The Gaussian Free Field and SLE4

I couldn’t resist breaking the order of my revision notes in order that the title might be self-referential. Anyway, it’s the night before my exam on Conformal Invariance and Randomness, and I’m practising writing this in case of an essay question about the Gaussian Free Field and its relation to the SLE objects discussed in the course.

What is a Gaussian Free Field?

The most natural definition is too technical for this context. Instead, recall that we could very informally consider a Poisson random measure to have the form of a series of Poisson random variables placed at each point in the domain, weighted infinitissimely so that the integrals over an area give a Poisson random variable with mean proportional to the measure of the area, and so that different areas are independent. Here we do a similar thing only for infinitesimal centred Gaussians. We have to specify the covariance structure.

We define the Green’s function on a domain D, which has a resonance with PDE theory, by:

G_D(x,y)=\lim_{\epsilon\rightarrow 0}\mathbb{E}[\text{time spent in }B(y,\epsilon)\text{ by BM started at }x\text{ stopped at }T_D]

We want the covariance structure of the hypothetical infinitesimal Gaussians to be given by \mathbb{E}(g(x)g(y))=G_D(x,y). So formally, we define (\Gamma(A),A\subset D) for open A, by (\Gamma(A_1),\ldots,\Gamma(A_n)) a centred Gaussian RV with covariance \mathbb{E}(\Gamma(A_1)\Gamma(A_2))=\int_{A_1\times A_2}dxdyG_D(x,y).

The good news is that we have a nice expression G_U(0,x)=\log\frac{1}{|x|}, and the Green’s functions are conformally invariant in the sense that G_{\phi(D)}(\phi(x),\phi(y))=G_D(x,y), following directly for conformality of Brownian Motion.

The bad news is that the existence is not clear. The motivation for this is the following though. We have a so-called excursion measure for BMs in a domain D. There isn’t time to discuss this now: it is infinite, and invariant under translations of the boundary (assuming the boundary is \mathbb{R}\subset \bar{\mathbb{H}}, which is fine after taking a conformal map). Then take a Poisson Point Process on the set of Brownian excursions with this measure. Now define a function f on the boundary of the domain dD, and define \Gamma_f(A) to be the sum of the values of f at the starting point of BMs in the PPP passing through A, weighted by the time spent in A. We have a universality relation given by the central limit theorem: if we define h to be (in a point limit) the expected value of this variable, and we take n independent copies, we have:

\frac{1}{\sqrt{n}}\left['\Gamma_f^1(A)+\ldots+\Gamma_f^n(A)-n\int_Ah(x)dx\right]\rightarrow\Gamma(A)

where this limiting random variable is Gaussian.

For now though, we assume existence without full proof.

SLE_4

We consider chordal SLE_k, which has the form of a curve \gamma[0,\infty] from 0 to \infty in H. The g_t the regularising function as normal, consider \tilde{X}_t=X_t-W_t:=g_t(x)-\sqrt{\kappa}\beta_t for some fixed x. We are interested in the  evolution of the function arg x. Note that conditional on the (almost sure for K<=4) event that x does not lie on the curve, arg x will converge either to 0 or pi almost surely, depending on whether the curve passes to the left or the right (respectively) of x.

By Loewner’s DE for the upper half-plane and Ito’s formula:

d\bar{X}_t=\sqrt{\kappa}d\beta_t,\quad d\log\bar{X}_t=(2-\frac{\kappa}{2})\frac{dt}{\bar{X}_t^2}+\frac{\sqrt{\kappa}}{\bar{X}_t}d\beta_t

So, when K=4, the dt terms vanish, which gives that log X is a local martingale, and so

d\theta_t=\Im(\frac{2}{\bar{X}_t}d\beta_t

is a true martingale since it is bounded. Note that

\theta_t=\mathbb{E}[\pi1(x\text{ on right of }\gamma)|\mathcal{F}_t]

Note that also:

\mathbb{P}(\text{BM started at }x\text{ hits }\gamma[0,t]\cup\mathbb{R}\text{ to the right of }\gamma(t)|\gamma[0,t])=\frac{\theta_t}{\pi} also.

SLE_4 and the Gaussian Free Field on H

We will show that this chordal SLE_4 induces a conformal Markov type of property in Gaussian Free Fields constructed on the slit-domain. Precisely, we will show that if \Gamma_T is a GFF on H_T=\mathbb{H}\backslash\gamma[0,T], then \Gamma_T+ch_T(\cdot)=\Gamma_0+ch_0(\cdot), where c is a constant to be determined, and h_t(x)=\theta_t(x) in keeping with the lecturer’s notation!

It will suffice to check that for all fixed p with compact support \Gamma_T(p)+c(h_T(p)-h_0(p)) is a centred Gaussian with variance \int dxdyG_H(x,y)p(x)p(y).

First, applying Ito and conformal invariance of the Green’s functions under the maps g_t,

dG_{H_t}(x,y)=cd[h(x),h(y)]_t

The details are not particularly illuminating, but exploit the fact that Green’s function on H has a reasonable nice form \log\left|\frac{x-\bar{y}}{x-y}\right|. We are also being extremely lax with constants, but we have plenty of freedom there.

After applying Ito and some (for now unjustified) Fubini:

dh_t(p)=\left(\int c.p(x)\Im(\frac{1}{\bar{X}_t})dx\right)d\beta_t

and so as we would have suspected (since h(x) was), this is a local martingale. We now deploy Dubins-Schwarz:

h_T(p)-h_T(0)\stackrel{d}{=}B_{\sigma(T)} for B an independent BM and

\sigma(T)=\int_0^Tdt(\int c.p(x)\Im(\frac{1}{\tilde{X}_t})dx)^2

So conditional on (h_T(p),t\in[0,T]), we want to make up the difference to \Gamma_0. Add to h_T(p)-h_0(p) an independent random variable distribution as N(0,s-\sigma(T)), where

s=\int dxdyp(x)p(y)G(x,y)\quad =:\Gamma_0(p)

Then

s-\sigma(T)=\int p(x)p(y)[G(x,y)-c\int_0^Tdt\Im(\frac{1}{X_t})\Im(\frac{1}{Y_t})]dxdy=\int p(x)p(y)G_t(x,y)dxdy as desired.

Why is this important?

This is important, or at least interesting, because we can use it to reverse engineer the SLE. Informally, we let T\rightarrow\infty in the previous result. This states that taking a GFF in the domain left by removing the whole of the SLE curve (whatever that means) then adding \pi at points on the left of the curve, which is the limit \lim_T h_T is the same as a normal GFF on the upper half plane added to the argument function. It is reasonable to conjecture that a GFF in a non-connected domain has the same structure as taking independent GFFs in each component, and this gives an interesting invariance condition on GFFs. It can also be observed (Schramm-Sheffield) that SLE_4 arises by reversing the argument – take an appropriate conditioned GFF on H and look for the interface between it being ‘large’ and ‘small’ (Obviously this is a ludicrous simplification). This interface is then, under a suitable limit, SLE_4.