# Generating uniform trees

A long time ago, I wrote quite a few a things about uniform trees. That is, a uniform choice from the $n^{n-2}$ unrooted trees with vertex set [n]. This enumeration, normally called Cayley’s formula, has several elegant arguments, including the classical Prufer bijection. But making a uniform choice from a large set is awkward, and so we seek more probabilistic methods to sample such a tree, which might also give insight into the structure of a ‘typical’ uniform tree.

In another historic post, I talked about the Aldous-Broder algorithm. Here’s a quick summary. We run a random walk on the complete graph $K_n$ started from a uniformly-chosen vertex. Every time we arrive at a vertex we haven’t visited before, we record the edge just traversed. Eventually we have visited all n vertices, so have recorded n-1 edges. It’s easy enough to convince yourself that these n-1 edges form a tree (how could there be a cycle?) and a bit more complicated to decide that the distribution of this tree is uniform.

It’s worth noting that this algorithm works to construct a uniform spanning tree on any connected base graph.

This post is about a few alternative constructions and interpretations of the uniform random tree. The first construction uses a Galton-Watson process. We take a Galton-Watson process where the offspring distribution is Poisson(1), and condition that the total population size is n. The resulting random tree has a root but no labels, however if we assign labels in [n] uniformly at random, the resulting rooted tree has the uniform distribution among rooted trees on [n].

Proof

This is all about moving from ordered trees to non-ordered trees. That is, when setting up a Galton-Watson tree, we distinguish between the following two trees, drawn extremely roughly in Paint:

That is, it matters which of the first-generation vertices have three children. Anyway, for such a (rooted) ordered tree T with n vertices, the probability that the Galton-Watson process ends up equal to T is

$\mathbb{P}(GW = T) = \prod_{v\in T} \frac{e^{-1}}{C(v)!} = e^{-n} \prod_{v\in T}\frac{1}{C(v)!},$

where $C(v)$ is the number of children of a vertex $v\in T$. Then, since $\mathbb{P}( |GW|=n )$ is a function of n, we find

$\mathbb{P}(GW=T \,\big|\, |GW|=n) = f(n)\prod_{v\in T} \frac{1}{C(v)!},$

where f(n) is a function of n alone (ie depends on T only through its size n).

But given an unordered rooted tree t, labelled by [n], there are $\prod_{v \in t} C(v)!$ ordered trees associated to t in the natural way. Furthermore, if we take the Poisson Galton-Watson tree conditioned to have total population size n, and label uniformly at random with [n], we obtain any one of these ordered trees with probability $\frac{f(n)}{n!} \prod_{v\in t} \frac{1}{C(v)!}$. So the probability that we have t after we forget about the ordering is $\frac{f(n)}{n!}$, which is a function of n alone, and so the distribution is uniform among the set of rooted unordered trees labelled by [n], exactly as required.

Heuristic for Poisson offspring distribution

In this proof, the fact that $\mathbb{P}(C(v)=k)\propto \frac{1}{k!}$ exactly balances the number of orderings of the k children explains why Poisson(1) works out. Indeed, you can see in the proof that Poisson(c) works equally well, though when $c\ne 1$, the event we are conditioning on (namely that the total population size is n) has probability decaying exponentially in n, whereas for c=1, the branching process is critical, and the probability decays polynomially.

We can provide independent motivation though, from the Aldous-Broder construction. Both the conditioned Galton-Watson construction and the A-B algorithm supply the tree with a root, so we’ll keep that, and look at the distribution of the degree of the root as constructed by A-B. Let $\rho=v_1,v_2,v_3,\ldots$ be the vertices [n], ordered by their discovery during the construction. Then $\rho$ is definitely connected by an edge to $v_2$, but thereafter it follows by an elementary check that the probability $\rho$ is connected to $v_m$ is $\frac{1}{n-1}$, independently across all m. In other words, the distribution of the degree of $\rho$ in the tree as constructed by A-B is

$1+ \mathrm{Bin}\left(n-2,\frac{1}{n-1}\right) \approx 1+\mathrm{Poisson}(1).$

Now, in the Galton-Watson process, conditioning the tree to have fixed, large size changes the offspring distribution of the root. Conveniently though, in a limiting sense it’s the same change as conditioning the tree to have size at least n. Since these events are monotone in n, it’s possible to take a limit of the conditioning events, and interpret the result as the Galton-Watson tree conditioned to survive. It’s a beautiful result that this interpretation can be formalised as a local limit. The limiting spine decomposition consists of an infinite spine, where the offspring distribution is a size-biased version of the original offspring distribution (and so in particular, always has at least one child) and where non-spine vertices have the original distribution.

In particular, the number of the offspring of the root is size-biased, and it is well-known and not hard to check that size-biasing Poisson(c) gives 1+Poisson(c) ! So in fact we have, in an appropriate limiting sense in both objects, a match between the degree distribution of the root in the uniform tree, and in the conditioned Galton-Watson tree.

This isn’t supposed to justify why a conditioned Galton-Watson tree is relevant a priori (especially the unconditional independence of degrees), but it does explain why Poisson offspring distributions are relevant.

Construction via G(N,p) and the random cluster model

The main reason uniform trees were important to my thesis was their appearance in the Erdos-Renyi random graph G(N,p). The probability that vertices {1, …, n} form a tree component in G(N,p) with some particular structure is

$p^{n-1} (1-p)^{\binom{n}{2}-(n-1)} \times (1-p)^{n(N-m)}.$

Here, the first two terms give the probability that the graph structure on {1, …, n} is correct, and the the final term gives the probability of the (independent) event that these vertices are not connected to anything else in the graph. In particular, this has no dependence on the tree structure chosen on [n] (for example, whether it should be a path or a star – both examples of trees). So the conditional distribution is uniform among all trees.

If we work in some limiting regime, where $pn\rightarrow 0$ (for example if n is fixed and $p=\frac{1}{N}\rightarrow 0$), then we can get away asymptotically with less strong conditioning. Suppose we condition instead just that [n] form a component. Now, there are more ways to form a connected graph with one cycle on [n] than there are trees on [n], but the former all require an extra edge, and so the probability that a given one such tree-with-extra-edge appears as the restriction to [n] in G(N,p) is asymptotically negligible compared to the probability that the restriction to [n] of G(N,p) is a tree. Naturally, the local limit of components in G(N,c/N) is a Poisson(c) Galton-Watson branching process, and so this is all consistent with the original construction.

One slightly unsatisfying aspect to this construction is that we have to embed the tree of size [n] within a much larger graph on [N] to see uniform trees. We can’t choose a scaling p=p(n) such that G(n,p) itself concentrates on trees. To guarantee connectivity with high probability, we need to take $p> \frac{\log n}{n}$, but by this threshold, the graph has (many) cycles with high probability.

At this PIMS summer school in Vancouver, one of the courses is focusing on lattice spin models, including the random cluster model, which we now briefly define. We start with some underlying graph G. From a physical motivation, we might take G to be $\mathbb{Z}^d$ or some finite subset of it, or a d-ary tree, or the complete graph $K_N$. As in classical bond percolation (note G(N,p) is bond percolation on $K_N$), a random subset of the edges of G are included, or declared open. The probability of a given configuration w, with e open edges is proportional to

$p^e (1-p)^{|E(G)| - e} q^{k(w)},$ (*)

where the edge-weight $p\in(0,1)$ as usual, and cluster weight $q\in (0,\infty)$, and $k(w)$ counts the number of connected components in configuration w. When q=1, we recover classical bond percolation (including G(N,p) ), while for q>1, this cluster-reweighting favours having more components, and q<1 favours fewer components. Note that in the case $q\ne 1$, the normalising constant (or partition function) of (*) is generally intractable to calculate explicitly.

As in the Erdos-Renyi graph, consider fixing the underlying graph G, and taking $p\rightarrow 0$, but also taking $\frac{q}{p}\rightarrow 0$. So the resulting graph asymptotically ‘wants to have as few edges as possible, but really wants to have as few components as possible’. In particular, 1) all spanning trees of G are equally likely; 2) any configuration with more than one component has asymptotically negligible probability relative to any tree; 3) any graph with a cycle has #components + #edges greater than that of a tree, and so is asymptotically negligible probability relative to any tree.

In other words, the limit of the distribution is the uniform spanning tree of G, and so this (like Aldous-Broder) is a substantial generalisation, which constructs the uniform random tree in the special case where $G=K_n$.

# Analytic vs Probabilistic Arguments for a Supercritical BP

This follows on directly from the previous post. I was originally going to talk only about what follows, but I got rather carried away with the branching process account. I was stuck on a particular exercise, and we ended up coming up with two arguments: one analytic and one probabilistic. Since the typical flavour of this blog is to present problems which show the advantage of the probabilistic approach, it seems only fair to remark on this case, where the analytic method was less interesting, but much simpler.

Recall that we have a supercritical random graph $G(n,\frac{\lambda}{n}), \lambda>1$, and we are considering the rescaled exploration process $S_{nt}$, which has asymptotic mean $\mu_t=1-t-e^{-\lambda t}$. We can calculate similarly an expression for the asymptotic variance

$\frac{\text{Var}(S_{nt})}{n}\rightarrow v_t=e^{-\lambda t}(1-e^{-\lambda t}).$

To use this to verify the result about the size of the giant component, we verify that $\mu_{\zeta_\lambda+x/\sqrt{n}}$ is negative, and has small variance, which would confirm that the giant component has size bounded above by $\zeta_\lambda$ almost surely. A similar argument is required for the lower bound. The variance is a separate matter, but it is therefore necessary that $\mu_t$ should be decreasing at $t=\zeta_\lambda$, that is $\mu_t'=\lambda e^{-\lambda \zeta_\lambda}<0$. This is what we try to prove in the remainder of this post. Recall that in the previous post we have checked that it is equal to zero here.

Heuristic Explanation

$\mu_t$ has been rescaled from the original definition of the exploration process in both size and time-scale so some care is needed to see why this should hold in the limit. Remember that all components apart from the giant component are of size O(log n). So immediately after exhausting the giant component, you are likely to be visiting components of size roughly log n. A time interval of dt for $\mu$ corresponds to ndt for S, during which S will visit some components of size log n and some of O(1) and some in between. In particular, some fixed proportion of vertices are isolated, that is, in a component of size 1.

There is then a complicated size-biasing train of thought. A component of size log n is more likely to come up than an isolated vertex, but there are not as many of them. The log n components push the derivative $\mu_t'$ towards zero, because S_t decreases by 1 over a time-interval of length log n, which gives a gradient of zero in the limit. However, the isolated vertices give a gradient of -1, because S_t decreases by 1 over a time interval of 1. Despite the fact that log n intervals are likely to appear earlier, it still remains the case that after exhausting a component (in particular, at time $t=\zeta_\lambda$, after exhausting the giant component), with some bounded below positive probability you will choose an isolated vertex next. The component size only affects that time-scale if it is O(n), which none of the remaining components are, so the derivative $\mu_{\zeta_\lambda}'$ consists of some complicated weighted mean of 0 and -1. In particular, it is negative.

Analytic solution

Obviously, that won’t do in practice. Suppressing lambdas for ease of notation, the key fact is: $e^{-\lambda \zeta}=1-\zeta$. We want to show that $\lambda e^{-\lambda \zeta}<1$. Substituting

$\lambda=-\frac{\log(1-\zeta)}{\zeta},$

means that it is required to show:

$-\frac{1-\zeta}{\zeta}\log(1-\zeta)<1.$

Differentiating the left hand side gives:

$\frac{\log(1-\zeta)+\zeta}{\zeta^2}<0,$

since of course $\log(1-\zeta)=\zeta+\frac{\zeta^2}{2}+\frac{\zeta^3}{3}+\dots$. So it suffice to check the result for small $\zeta$. But, again using a Taylor series:

$-\frac{1-\zeta}{\zeta}\log(1-\zeta)=1-\frac12\zeta+O(\zeta^2)<1,$

for small $\zeta$. This gives the required result.

Probabilistic Interpretation and Solution

First, we observe that $\lambda e^{-\lambda\zeta}=\lambda(1-\zeta)$ is the expected number of vertices in the first generation of a $\text{Po}(\lambda)$ whose progeny become extinct. This motivates considering the canonical decomposition of a supercritical branching process Z into the skeleton process and the dual process. The skeleton $Z^+$ consists of all vertices which have infinitely many successors. It is relatively easy to show that this is a branching process with offspring distribution $\text{Po}(\lambda\zeta)$ conditioned on being positive. The dual process $Z^*$ is a G-W branching process with offspring distribution $\text{Po}(\lambda)$ conditioned on dying. This is the same as a branching process with offspring distribution $\text{Po}(\lambda(1-\zeta)$, by a sprinkling argument, which says that if we begin with a Poisson number of things, then remove each one independently with some fixed probability, the remaining number of things is Poisson also.

We can construct the original branching process by

• With probability $\zeta$, take the skeleton, and affixe independent copies of $Z^*$ at every vertex in the skeleton.
• With probability $1-\zeta$, just take a copy of $Z^*$.

It is immediately clear that $\lambda(1-\zeta)\leq 1$. After all, the dual process is almost surely finite, so the offspring distribution cannot have expectation greater than 1. Checking that this is strong is more fiddly. The best way I have come up with is to examine the tail of the distribution of total population size of the original branching process.

The total population size T of a branching process has an exponential tail if the offspring distribution is subcritical. It isn’t hugely surprising that this behaves like a large deviation for iid RVs, since in the limit such an event requires a lot of the offspring counts to deviate substantially from the mean. The same holds in the supercritical case, with the additional complication that though the finite tail decays exponential, there is positive probability that the total size will be infinite. In the critical case, however, there is a power-law decay. This is not hugely surprising as it marks the threshhold for the appearance of the infinite population, just as in a multiplicative coalescent at time 1, we have a load of very large components just about to form a giant component. The tool for all of these results is Dwass’s Theorem, which says:

$\mathbb{P}(T=n)=\frac{1}{n}\mathbb{P}(X_1+\ldots+X_n=n-1),$

where $X_1$ are iid with the offspring distribution. When $\mathbb{E}X_1\neq 1$, this is a large deviation event, for which Cramer’s theorem applies (assuming, as is the case for the Poisson distribution, that the offspring distribution has finite variance). When, $\mathbb{E}X=1$, the Central Limit Theorem says that with high probability,

$X_1+\ldots+X_n\in [n-n^{3/4},n+n^{3/4}],$

so, skating over the details of whether everything is exactly uniform within this CLT scaling window,

$\mathbb{P}(T=n)\geq \frac{1}{n}\cdot\frac{1}{2n^{3/4}}.$

The true exponent of the power law decay is substantially slower than this, but the above argument works as a back-of-the-envelope bound.

In particular, if the dual process has mean 1, then the population size of the original branching process is given by taking a distribution with exponential tail with some probability and a distribution with power-law tail with some probability. Obviously the power-law will dominate, which contradicts the assumption that the original branching process was supercritical, and so has an exponential tail.

# Exploring the Supercritical Random Graph

I’ve spent a bit of time this week reading and doing all the exercises from some excellent notes by van der Hofstad about random graphs. I think they are absolutely excellent and would not be surprised if they become the standard text for an introduction to probabilistic combinatorics. You can find them hosted on the author’s website. I’ve been reading chapters 4 and 5, which approaches the properties of phase transitions in G(n,p) by formalising the analogy between component sizes and population sizes in a binomial branching process. When I met this sort of material for the first time during Part III, the proofs generally relied on careful first and second moment bounds, which is fine in many ways, but I enjoyed vdH’s (perhaps more modern?) approach, as it seems to give a more accurate picture of what is actually going on. In this post, I am going to talk about using the branching process picture to explain why the giant component emerges when it does, and how to get a grip on how large it is at any time after it has emerged.

Background

A quick tour through the background, and in particular the notation will be required. At some point I will write a post about this topic in a more digestible format, but for now I want to move on as quickly as possible.

We are looking at the sparse random graph $G(n,\frac{\lambda}{n})$, in the super-critical phase $\lambda>1$. With high probability (that is, with probability tending to 1 as n grows), we have a so-called giant component, with O(n) vertices.

Because all the edges in the configuration are independent, we can view the component containing a fixed vertex as a branching process. Given vertex v(1), the number of neighbours is distributed like $\text{Bi}(n-1,\frac{\lambda}{n})$. The number of neighbours of each of these which we haven’t already considered is then $\text{Bi}(n-k,\frac{\lambda}{n})$, conditional on k, the number of vertices we have already discounted. After any finite number of steps, k=o(n), and so it is fairly reasonable to approximate this just by $\text{Bi}(n,\frac{\lambda}{n})$. Furthermore, as n grows, this distribution converges to $\text{Po}(\lambda)$, and so it is natural to expect that the probability that the fixed vertex lies in a giant component is equal to the survival probability $\zeta_\lambda$ (that is, the probability that it is infinite) of a branching process with $\text{Po}(\lambda)$ offspring distribution. Note that given a graph, the probability of a fixed vertex lying in a giant component is equal to the fraction of the vertex in the giant component. At this point it is clear why the emergence of the giant component must happen at $\lambda=1$, because we require $\mathbb{E}\text{Po}(\lambda)>1$ for the survival probability to be non-zero. Obviously, all of this needs to be made precise and rigorous, and this is treated in sections 4.3 and 4.4 of the notes.

Exploration Process

A common functional of a rooted branching process to consider is the following. This is called in various places an exploration process, a depth-first process or a Lukasiewicz path. We take a depth-first labelling of the tree v(0), v(1), v(2),… , and define c(k) to be the number of children of vertex v(k). We then define the exploration process by:

$S(0)=0,\quad S(k+1)=S(k)+c(k)-1.$

By far the best way to think of this is to imagine we are making the depth-first walk on the tree. S(k) records how many vertices we have seen (because they are connected by an edge to a vertex we have visited) but have not yet visited. To clarify understanding of the definition, note that when you arrive at a vertex with no children, this should decrease by one, as you can see no new vertices, but have visited an extra one.

This exploration process is useful to consider for a couple of reasons. Firstly, you can reconstruct the branching process directly from it. Secondly, while other functionals (eg the height, or contour process) look like random walks, the exploration process genuinely is a random walk. The distribution of the number of children of the next vertex we arrive at is independent of everything we have previously seen in the tree, and is the same for every vertex. If we were looking at branching processes in a different context, we might observe that this gives some information in a suitably-rescaled limit, as rescaled random walks converge to Brownian motion if the variance of the (offspring) distribution is finite. (This is Donsker’s result, which I should write something about soon…)

The most important property is that the exploration process returns to 0 precisely when we have exhausted all the vertices in a component. At that point, we have seen exactly the vertices which we have explored. There is no reason not to extend the definition to forests, that is a union of trees. The depth-first exploration is the same – but when we have exhausted one component, we move onto another component, chosen according to some labelling property. Then, running minima of the exploration process (ie times when it is smaller than it has been before) correspond to jumping between components, and thus excursions above the minimum to components themselves. The running minimum will be non-positive, with absolute value equal to the number of components already exhausted.

Although the exploration process was defined with reference to and in the language of trees, the result of a branching process, this is not necessary. With some vertex denoted as the root, we can construct a depth-first labelling of a general graph, and the exploration process follows exactly as before. Note that we end up ignoring all edges except a set that forms a forest. This is what we will apply to G(n,p).

Exploring G(n,p)

When we jump between components in the exploration process on a supercritical (that is $\lambda>1$) random graph, we move to a component chosen randomly with size-biased distribution. If there is a giant component, as we know there is in the supercritical case, then this will dominate the size-biased distribution. Precisely, if the giant component takes up a fraction H of the vertices, then the number of components to be explored before we get to the giant component is geometrically distributed with parameter H. All other components have size O(log n), so the expected number of vertices explored before we get to the giant component is O(log n)/H = o(n), and so in the limit, we explore the giant component immediately.

The exploration process therefore gives good control on the giant component in the limit, as roughly speaking the first time it returns to 0 is the size of the giant component. Fortunately, we can also control the distribution of S_t, the exploration process at time t. We have that:

$S_t+(t-1)\sim \text{Bi}(n-1,1-(1-p)^t).$

This is not too hard to see. $S_t+(t-1)$ is number of vertices we have explored or seen, ie are connected to a vertex we have explored. Suppose the remaining vertices are called unseen, and we began the exploration at vertex 1. Then any vertex with label in {2,…,n} is unseen if it successively avoids being in the neighbourhood of v(1), v(2), … v(t). This happens with probability $(1-p)^t$, and so the probability of being an explored or seen vertex is the complement of this.

In the supercritical case, we are taking $p=\frac{\lambda}{n}$ with $\lambda>1$, and we also want to speed up S, so that all the exploration processes are defined on [0,1], and rescale the sizes by n, so that it records the fraction of the graph rather than the number of vertices. So we set consider the rescaling $\frac{1}{n}S_{nt}$.

It is straightforward to use the distribution of S_t we deduce that the asymptotic mean $\mathbb{E}\frac{1}{n}S_{nt}=\mu_t = 1-t-e^{-\lambda t}$.

Now we are in a position to provide more concrete motivation for the claim that the proportion of vertices in the giant component is $\zeta_\lambda$, the survival probability of a branching process with $\text{Po}(\lambda)$ offspring distribution. It helps to consider instead the extinction probability $1-\zeta_\lambda$. We have:

$1-\zeta_\lambda=\sum_{k\geq 0}\mathbb{P}(\text{Po}(\lambda)=k)(1-\zeta_\lambda)^k=e^{-\lambda\zeta_\lambda},$

where the second equality is a consequence of the simple form for the moment generating function of the Poisson distribution.

As a result, we have that $\mu_{\zeta_\lambda}=0$. In fact we also have a central limit theorem for S_t, which enables us to deduce that $\frac{1}{n}S_{n\zeta_\lambda}=0$ with high probability, as well as in expectation, which is precisely what is required to prove that the giant component of $G(n,\frac{\lambda}{n})$ has size $n(\zeta_\lambda+o(1))$.

# Branching Processes and Dwass’s Theorem

This is something I had to think about when writing my Part III essay, and it turns out to be relevant to some of the literature I’ve been reading this week. The main result is hugely helpful for reducing a potentially complicated combinatorial object to a finite sum of i.i.d. random variables, which in general we do know quite a lot about. I was very pleased with the proof I came up with while writing the essay, even if in the end it turned out to have appeared elsewhere before. (Citation at end)

Galton-Watson processes

A Galton-Watson process is a stochastic process describing a simple model for evolution of a population. At each stage of the evolution, a new generation is created as every member of the current generation produces some number of `offspring’ with identical and independent (both across all generations and within generations) distributions. Such processes were introduced by Galton and Watson to examine the evolution of surnames through history.

More precisely, we specify an offspring distribution, a probability distribution supported on $\mathbb{N}_0$. Then define a sequence of random variables $(Z_n,n\in\mathbb{N})$ by:

$Z_{n+1}=Y_1^n+\ldots+Y_{Z_n}^n,$

where $(Y_k^n,k\geq 1,n\geq 0)$ is a family of i.i.d. random variables with the offspring distribution $Y$. We say $Z_n$ is the size of the $n$th generation. From now on, assume $Z_0=1$ and then we call $(Z_n,n\geq 0)$ a Galton-Watson process. We also define the total population size to be

$X:=Z_0+Z_1+Z_2+\ldots,$

noting that this might be infinite. We refer to the situation where $X<\infty$ finite as extinction, and can show that extinction occurs almost surely when $\mathbb{E}Y\leq 1$, excepting the trivial case $Y=\delta_1$. The strict inequality parts are as you would expect. We say the process is critical if $\mathbb{E}Y=1$, and this is less obvious to visualise, but works equally well in the proof, which is usually driven using generating functions.

Total Population Size and Dwass’s Theorem

Of particular interest is $X$, the total population size, and its distribution. The following result gives us a precise and useful result linking the probability of the population having size $n$ and the distribution of the sum of $n$ RVs with the relevant offspring distribution. Among the consequences are that we can conclude immediately, by CLT and Cramer’s Large Deviations Theorem, that the total population size distribution has power-law decay in the critical case, and exponential decay otherwise.

Theorem (Dwass (1)): For a general branching process with a single time-0 ancestor and offspring distribution $Y$ and total population size $X$:

$\mathbb{P}(X=k)=\frac{1}{k}\mathbb{P}(Y^1+\ldots+ Y^k=k-1),\quad k\geq 1$

where $Y^1,\ldots,Y^k$ are independent copies of $Y$.

We now give a proof via a combinatorial argument. The approach is similar to that given in (2). Much of the literature gives a proof using generating functions.

Proof: For motivation, consider the following. It is natural to consider a branching process as a tree, with the time-0 ancestor as the root. Suppose the event $\{X=k\}$ in holds, which means that the tree has $k$ vertices. Now consider the numbers of offspring of each vertex in the tree. Since every vertex except the root has exactly one parent, and there are no vertices outside the tree, we must have $Y^1+\ldots+Y^k=k-1$ where $Y^1,\ldots,Y^k$ are the offspring numbers in some order. However, observe that this is not sufficient. For example, if $Y^1$ is the number of offspring of the root, and $k\geq 2$, then we must have $Y^1\geq 1$. Continue reading