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Abstract

In the first half of this thesis, we study the random forest obtained by conditioning

the Erdős–Rényi random graph G(N, p) to include no cycles. We focus on the critical

window, in which p(N) = 1+λN−1/3

N , as studied by Aldous for G(N, p). We describe a

scaling limit for the sizes of the largest trees in this critical random forest, in terms of

the excursions above zero of a particular reflected diffusion. We proceed by showing

convergence of the reflected exploration process associated to the critical random forests,

using careful enumeration of classes of forests, and the asymptotic properties of uniform

trees.

In the second half of this thesis, we study a random graph process where vertices have

one of k types. An inhomogeneous random graph represents the initial connections

between vertices, and over time new edges are added homogeneously, as in the classical

random graph process. Each vertex is frozen at some rate, resulting in the removal of

its entire component. This is a version of the frozen percolation model introduced by

Ráth, which (under mild conditions) exhibits self-organised criticality: the dynamics

first drive the system to a critical state, and from then on maintain it in criticality.

We prove a convergence result for the proportion of vertices of each type which survive

until time t, and describe the local limit in terms of a multitype branching process whose

parameters are critical and given by the solution to an unusual differential equation

driven by Perron–Frobenius eigenvectors. The argument relies on a novel multitype

exploration process, leading to a concentration result for the proportion of types in all

large components of a near-critical inhomogeneous random graph; and on a stronger

convergence result for mean-field frozen percolation, when the initial graphs may be

random.
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Chapter 1

Introduction

In this short introduction, we introduce the models and techniques on which the rest of

this thesis is based. In particular, we review the theory of the Erdős–Rényi random

graph model, and some examples of random trees. A key method in studying these

models is an exploration process, which allows us to reveal the structure of a random

object one vertex at a time and track it in a Markovian manner. We introduce some

natural examples of exploration processes, and explain how they can be used to describe

asymptotic properties of the underlying graphs.

The second half of this thesis concerns graph-valued processes which exhibit self-organised

criticality. We will review the history of such models, and introduce mean-field frozen

percolation, an adaptation of which will be the main focus of Chapters 4 and 5.

1.1 Random graphs, random trees and coalescence

Throughout this thesis, a graph G = (V, E) will always be undirected and simple. That

is, G contains no loops nor multiple edges, so E ⊆ V (2), the set of unordered pairs of

distinct vertices in V .

The Erdős–Rényi random graph has been one of the most widely studied random

structures since its introduction in the 1950s. We define the random graph G(N, p) as

follows. The set of vertices is taken to be [N ] := {1, . . . , N}, and then each potential
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edge ij (for i < j) is present with probability p, independently of all other edges. Erdős

and Rényi [22, 23] initially studied G(N, m), a uniformly-chosen graph with vertex

set [N ] and precisely m edges. In one of the first and most famous examples of the

probabilistic method, Erdős [21] used G(N, 1/2) to derive lower bounds for Ramsey

numbers.

The model G(N, p) as defined in the previous paragraph was first introduced by Gilbert

[30]. It is worth observing that for any p ∈ (0, 1), the random graph G(N, p) conditioned

to contain exactly m edges has the same distribution as G(N, m). For p ≤ p′, there is a

natural coupling of G(N, p) and G(N, p′) such that

E(G(N, p)) ⊆ E(G(N, p′)). (1.1)

We can achieve this by, for example, taking G(N, p) and (to borrow terminology from

Bollobás [14]) sprinkling extra edges independently with probability p′−p
1−p between any

pair of vertices unconnected in G(N, p). Alternatively, we can issue each potential

edge e ∈ [N ](2) an independent random variable Ue ∼ U [0, 1]. Then, we include e in

E(G(N, p)) iff Ue ≤ p. This gives a coupling of G(N, p) for all p ∈ [0, 1].

Definition 1.1. We will usually assume p = p(N) is a function of N , and we will be

interested in asymptotic properties of G(N, p) as N → ∞. We say that a property A

holds with high probability (w.h.p.) in G(N, p) if

P(A holds in G(N, p)) → 1,

as N → ∞.

Definition 1.2. We use the following notation to describe asymptotic scalings. As

usual, if (aN ), (bN ) are real-valued sequences, we write aN = O(bN ) if aN
bN

is bounded as

N → ∞, and aN = o(bN ) if aN
bN

→ 0 as N → ∞. Furthermore, when both sequences

are positive, we write aN = Θ(bN ) if

0 < lim inf
N→∞

aN

bN
≤ lim sup

N→∞

aN

bN
< ∞.
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We also want to use similar language for random variables, but there is a risk of

ambiguity. Following Janson [32] closely, we make the following pair of definitions.

Definition 1.3. Let (AN ) be a family of random variables, and (bN ) a positive real-

valued sequence. Then we say AN = Op(bN ) if AN /bN is bounded in probability. That

is,

lim
C→∞

lim sup
N→∞

P(|AN | > CbN ) = 0.

Similarly, we say AN = op(bN ) if limN→∞ P(|AN | > cbN ) = 0 for all c > 0. Finally, we

say AN = Θp(bN ) if

lim
C→∞

lim sup
N→∞

P(AN > CbN ) = lim
c→∞

lim sup
N→∞

P(AN < cbN ) = 0.

Definition 1.4. Then we say AN = O(bN ) with high probability if for some C > 0 the

property {|AN | ≤ CbN } holds with high probability. We also say that AN = o(bN ) with

high probability if the properties {|AN | ≤ cbN } hold with high probability for all c > 0.

Similarly, we say that AN = Θ(bN ) with high probability if for some 0 < c ≤ C the

property {cbN ≤ AN ≤ CbN } holds with high probability.

Note that AN = O(bN ) with high probability implies AN = Op(bN ), but the converse

statement is false. However, AN = op(bN ) is equivalent to AN = o(bN ) with high

probability.

1.1.1 Erdős–Rényi process: sparse regime

In this thesis, we will mostly be concerned with G(N, p) in the sparse regime, that is

p = Θ(1/N). In this regime, the typical number of edges present in G(N, p) is Θ(N),

and the degree of a typical vertex is Θ(1). Indeed, for any vertex v in G(N, c/N), the

degree of v has the Binomial(N − 1, c/N) distribution, which is well-approximated by

Poisson(c) for large N .

Motivated by the coupling (1.1), we consider a random graph process
(
GN (t), t ≥ 0

)
as

follows. GN takes values among the set of graphs on vertex set [N ]. We set GN (0) to be

the empty graph, and add each potential edge in [N ](2) independently at rate 1
N . It is



4 Introduction

easily seen that GN is Markov, and satisfies

GN (t) d= G(N, 1 − e−t/N ).

Note that for large N , we have 1 − e−t/N = (1 + o(1))t/N .

One of the most studied properties of the sparse random graph process is the emergence

of the so-called giant component. Let |CN
1 | ≥ |CN

2 | ≥ . . . be the sizes of the components of

a graph in decreasing order. The size of the largest component CN
1 in G(N, p) undergoes

a phase transition at p = 1
N . The regimes can be summarised as follows.

• For p = c
N , with c < 1, then |CN

1 | = O(log N) as N → ∞, with high probability.

We say that such a random graph is subcritical.

• For p = c
N , with c > 1, then |CN

1 | = (ζc + o(1))N , where ζc is a positive constant,

and |CN
2 | = O(log N) with high probability. We say such a random graph is

supercritical and that CN
1 is the (unique) giant component.

• For p = 1
N , then |CN

1 |, . . . , |CN
k | = Θp

(
N2/3

)
for any k ∈ N. We say such a random

graph is critical. As we shall see, it is possible to describe the distributional limit

of N−2/3
(
|CN

1 |, . . . , |CN
k |
)
. Note that this does not assert that all components

have size Θ
(
N2/3

)
.

The methods used by Erdős and Rényi in [23] mostly involve careful bounds on the

proportion of vertices contained within small trees via second-moment methods. We will

shortly introduce some more modern approaches, based on approximating the structure

of G(N, c/N) locally by a branching process.

1.1.2 Galton–Watson trees

We will shortly define a relevant family of branching processes. First, we define the

Ulam–Harris notation for the space of trees on which they are supported.

Definition 1.5. Let U := {∅} ∪
⋃

k≥1 Nk. For u ∈ U, we call |u| the height (or

generation) of u. For u = (u1, . . . , uk) ∈ U\{∅}, let the parent of u be p(u) :=

(u1, . . . , uk−1).
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An ordered, rooted tree T is a subset of U, such that ∅ ∈ T, and for any u = (u1, . . . , uk) ∈

T we have p(u) ∈ T and (u1, . . . , uk−1, j) ∈ T for 1 ≤ j ≤ uk − 1. For each u ∈ T, let

the children of u in T be C(u) := {w ∈ T : p(w) = u}, and set c(u) := |C(u)|. When we

add edges between each u ∈ T and all of its children C(u), the resulting graph is indeed

acyclic and connected.

Let µ be a probability distribution on N0. A Galton–Watson tree (or a branching process

tree) Tµ with offspring distribution µ is a random ordered, rooted tree generated as

follows. First, sample independent random variables c̄(u) distributed as µ, for every

u ∈ U. Then let Tµ be the unique ordered, rooted tree in which the number of children

c(u) in Tµ is equal to c̄(u) for every u ∈ Tµ.

We will refer to |Tµ| as the total population size of Tµ, in keeping with Galton’s biological

motivation for the model. We define extinction to be the event {|Tµ| < ∞}, and survival

to be the event {|Tµ| = ∞}.

Remark. The classical definition of the Galton–Watson process is a Markov chain

(Zn)n≥0 on Z≥0 characterised by Z0 = 1, and the recurrence Zn+1 = ∑Zn
i=1 ξ

(n)
i , where

(ξ(n)
i , n ≥ 0, i ≥ 1) are IID random variables with distribution µ. Each Zn represents the

number of individuals in the nth generation. Note that this definition can be recovered

from the Galton–Watson tree Tµ by taking Zn = |{u ∈ Tµ : |u| = n}|.

The fundamental result concerning survival of Galton–Watson processes says that

positivity of the survival probability depends only on the mean of µ. First, we define

fµ(t) = ∑∞
k=0 µktk to be the probability generating function corresponding to µ. Now

we can state the following result.

Proposition 1.6. Let µ be a probability distribution on Z≥0 other than δ1. Then, if∑
k≥0 kµk ≤ 1,

P(|Tµ| = ∞) = 0.

If ∑k≥0 kµk > 1, then there is a unique tµ ∈ [0, 1) such that fµ(tµ) = tµ. Furthermore

P(|Tµ| = ∞) = ζµ := 1 − tµ.
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Definition 1.7. We say a Galton–Watson process is subcritical, critical or supercritical

when ∑k≥0 kµk is, respectively, less than 1, equal to 1, or greater than 1.

In the case where µ is Poisson(c), the pgf fµ is particularly tractable, so let us write ζc

for the survival probability in this case. We obtain

ζc = 1 − e−cζc . (1.2)

Later, we will be interested in graphs in the barely supercritical regime where c = 1 + ϵ

for 0 < ϵ ≪ 1. Letting ϵ ↓ 0 and linearising in (1.2), we obtain ζ1+ϵ = 2ϵ(1 + o(1)).

1.1.3 Uniform trees

Recall that a tree is a simple connected graph with no cycles. Cayley’s formula states

for that every N , there are NN−2 trees on vertex set [N ]. We will call TN , a tree chosen

uniformly at random from this set, a uniform tree on [N ]. This is a special case of a

uniform spanning tree, here with reference to KN , the complete graph on [N ].

Now consider G(N, p), and fix k ≤ N . Conditional on the event that {1, . . . , k} is the

vertex set of a tree in G(N, p), this tree is a uniform tree on {1, . . . , k}, since, in G(N, p),

the probability of any configuration depends only on the number of edges present.

Some of the tools required to treat uniform trees will be easier to develop in the setting

of Galton–Watson trees. Fortunately, it is possible to describe a uniform tree as a

Galton–Watson tree conditioned to have a particular total population size. We formalise

this, and give a short proof, based on Aldous’s outline [3].

Proposition 1.8. [3, §2.1] Let µ be Poisson(1), and Tµ the corresponding Galton–

Watson tree. We condition on the event that |Tµ| = N , and then assign labels [N ] to

the vertices of Tµ uniformly at random. To the resulting (labelled) ordered, rooted tree,

we associate the corresponding unordered, labelled tree with edges precisely from vertex

u to each of its c(u) children, for all u ∈ Tµ. We call this unordered, labelled tree T̃N .

Then T̃N
d= TN .
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Proof. For any rooted, ordered tree T with size N , we have

P(Tµ = T) =
∏
v∈T

e−1

C(v)! = e−N
∏
v∈T

1
C(v)! .

Since P(|Tµ| = N) is a function of N ,

P
(
Tµ = T

∣∣ |Tµ| = N
)

= f(N)
∏
v∈T

1
C(v)! ,

where f(N) depends only on N , not on T.

Now consider a particular unordered, labelled rooted tree (T̃, ρ̃) with |T̃ | = N and a root

ρ̃ ∈ T̃ . Then there are ∏
v∈T̃

C(v)! ordered, labelled rooted trees associated to (T̃, ρ̃). Each

of these ordered labelled rooted trees rooted trees arises with probability f(N)
N !

∏
v∈T

1
C(v)!

when we choose a uniformly labelled version of Tµ conditioned to have N vertices.

Therefore P
(
(T̃N , ρ̃N ) = (T̃, ρ̃)

)
= f(N)

N ! . This is a function of N alone, so the law of

(T̃N , ρ̃N ) is uniform on the set of rooted unordered labelled trees, as required.

1.1.4 Multiplicative coalescence

When we study the random graph process as above, sometimes we will be interested only

in the sizes of components, rather than the graph structure within such components.

Ignoring this internal structure, what remains is a process of block sizes, where pairs of

blocks can join together, corresponding to the addition of an edge between two hitherto

distinct components. Various models of such a coalescence process have been studied

mathematically, and are applicable here.

Continuum models and Smoluchowski’s equations

Consider a general setting with a large number of blocks, which may have any mass

x ∈ R+. Any pair of blocks with masses x and y may merge to form a single block of

mass x + y, and the rate at which this happens is specified by some kernel K(x, y) ≥ 0.
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Now, we assume that all masses are positive integers. Let ck(t) ≥ 0 be a function which,

heuristically, represents the density of blocks with mass k ∈ N at time t. We may

describe the evolution through a system of coupled ODEs, referred to as Smoluchowski’s

(coagulation) equations:

d
dt

ck(t) = 1
2

k−1∑
ℓ=1

K(ℓ, k − ℓ)cℓ(t)ck−ℓ(t) − ck(t)
∞∑

ℓ=1
K(k, ℓ)cℓ(t), k ≥ 1. (1.3)

In each of these equations, the first term on the RHS gives the rate at which blocks of

mass k are formed as a result of two smaller blocks merging, and the second term gives

the rate at which blocks of mass k are lost as a result of merging with other blocks.

Smoluchowski [63] introduced this model to investigate molecules in solution, for which

a typical kernel might be K(x, y) := (x1/3 + y1/3)(x−1/3 + y−1/3). However, three

simpler kernels with combinatorial interpretations have proven tractable and useful for

applications. The constant kernel K(x, y) ≡ 1 leads to Kingman’s coalescent [39], which

has been much studied as a model in population genetics. The additive coalescent with

kernel K(x, y) = x + y, studied by Aldous and Pitman [6], and Evans and Pitman [25],

is related to a natural growth process for uniform forests [58]. These and many other

examples of coalescence are considered from both mathematical and applied perspectives

in Aldous’s survey paper [7].

For the purposes of this thesis, we focus on the multiplicative kernel K(x, y) = xy. The

relevance of this kernel is based on the following observation. In the random graph

process, whenever there are distinct components with sizes x and y, the rate at which

they are joined is proportional to the number of potential edges between them, that is

xy.

In this setting, instead of ck(t), it is more convenient to consider vk(t) ≥ 0, the density

of mass contained in blocks of mass k at time t. So vk(t) = kck(t), and we rewrite (1.3)

as
d
dt

vk(t) = k

2

k−1∑
ℓ=1

vℓ(t)vk−ℓ(t) − kvk(t)
∞∑

ℓ=1
vℓ(t), k ≥ 1. (1.4)
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Some arguments and interpretations are better suited to one of (ck(t)) and (vk(t)) than

the other. For example, in Chapter 4, it will be convenient to state the main result

about convergence of the mean-field frozen percolation process in terms of (vk(t)), but

for technical reasons the proof will use (ck(t)).

Solutions to (1.4) and the gelation property

There are analytic challenges in proving existence and uniqueness of solutions to (1.4) for

various classes of initial condition (vk(0), k ∈ N). McLeod [50] demonstrated existence

and uniqueness of solutions on t ∈ [0, 1) under monodisperse initial conditions, that is

when v(0) = (1, 0, 0, . . .). This corresponds to starting from an empty graph. The proof

relies on the finiteness of ∑∞
k=1 kvk(t), which diverges as t ↑ 1, corresponding to the

formation of a giant component in the random graph process at criticality.

This gelation effect holds more generally for solutions to (1.4). That is, there exists

some gelation time Tg ≥ 0, depending on the initial condition v(0), such that the total

mass ∑∞
k=1 vk(t) is constant for t ∈ [0, Tg], but strictly decreasing on [Tg, ∞). It is

helpful to think of this loss of mass arising from the creation (in finite time) of blocks

‘with infinite mass’, which can’t participate in further coalescence events, and don’t

contribute to the sum ∑∞
k=1 vk(t).

Kokholm [40] was able to extend existence and uniqueness of the solution to (1.4) to the

entirety of t ∈ R≥0, again with monodisperse initial conditions. This complex-analytic

argument exploits the exact form of the solution with these initial conditions, and does

not generalise easily to a broader class of initial conditions.

With general initial conditions, existence and uniqueness of solutions to (1.4) up to the

gelation time was shown by several authors, including Norris [54] under more general

coalescence kernels. Existence of solutions beyond the gelation time was studied by

several authors, including Laurençot [41] via PDE methods, and Jeon [35] via a weak

convergence argument similar to the one we will use in Chapter 4. All of these authors
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show the following expression for the gelation time

Tg = 1∑
k≥1 kvk(0) ∈ [0, ∞). (1.5)

Flory’s model [26] is an alternative to Smoluchowski’s, in which the ‘infinite-mass’ gel

continues to coalesce with finite blocks (called the sol). The corresponding equations

are
d
dt

vk(t) = k

2

k−1∑
ℓ=1

vℓ(t)vk−ℓ(t) − kvk(t)
∞∑

ℓ=1
vℓ(0). (1.6)

Here, the final term ∑∞
ℓ=1 vl(0) represents the ‘total mass’ of the system, which is

assumed to be constant. Note that this model corresponds directly to the random graph

process, where the giant component continues to form edges with small components.

Norris [55] shows existence and uniqueness of solutions to a version of (1.6) corresponding

to a substantial generalisation of the coalescence dynamics, called cluster coagulation.

Global existence and uniqueness of solutions to (1.4) under general initial conditions

was unresolved until Ráth [60] proved this with the restriction that the initial v(0) has

finite support. In a similar argument via generating functions, Normand and Zambotti

[53] show the same result without the requirement that v(0) has finite support. They

further show that the total mass Φ(t) := ∑
vk(t) is analytic on [0, ∞)\{Tg}, and give

conditions under which its right-derivative at criticality satisfies d+
dt Φ(Tg) < ∞. We

present a version of this result in Chapter 4.

Stochastic coalescents

We are primarily interested in solutions to Smoluchowski’s equations as limits of random,

discrete coalescent processes. Such processes were introduced by Marcus [49] and studied

by Lushnikov [46, 47], and are often called Marcus–Lushnikov processes.

We let N ∈ N be some index, which we treat as the scaling for the total mass. Then,

we consider the Markov chain with state space given by finite non-increasing sequences

of positive integers (which we interpret as block masses) and the following transitions:

at rate K(x, y)/N , we replace each pair x and y in the sequence with x + y, reordering
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if necessary. The sequence of component sizes in a random graph process (including a

version started from any initial graph on [N ]) is an example of such a Marcus–Lushnikov

process with multiplicative kernel.

Given such a process, let cN
k (t) := 1

N #{blocks with mass k at time t}, and vN
k (t) :=

kcN
k (t). In many cases, it is natural to assume that N is the initial total mass, that is∑∞
k=1 vN

k (0) = 1. This is consistent with the interpretation of the model as N particles

of equal mass, some of which join together into blocks. Note then that cN (t) can be

viewed as a measure on block masses, and vN (t) the corresponding size-biased measure

(or probability distribution) giving the mass of the block containing a randomly-selected

particle.

We are interested in the convergence of these Marcus–Lushnikov processes as the index

N tends to infinity. Jeon [35] and Norris [54] show convergence to the Smoluchowski

equations (1.3) for a general class of kernels which do not induce gelation. In particular,

this does not include the multiplicative case. Norris [55] shows as a special case of

subsequent work on cluster coagulation that multiplicative Marcus–Lushnikov processes

converge uniformly in distribution in ℓ1 to the solution of Flory’s equations (1.6), and

several authors [27, 28] have studied in greater detail which kernels lead to Flory rather

than Smoluchowski equations as the hydrodynamic limit.

In Section 1.3.1, we will introduce a mean-field frozen percolation model, which shares

some of the dynamics of the multiplicative coalescent but which does have Smoluchowski

equations as its hydrodynamic limit.

1.2 Exploration processes and limits

1.2.1 Exploration processes

Definition 1.9. Let G be some (not necessarily random) graph with vertex set [N ].

Throughout, we define the neighbourhood of a vertex v to be Γ(v) := {w ∈ V (G), wv ∈

E(G)}, the set of vertices connected to v by an edge. Then, take a (possibly random)
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ordering v1, v2, . . . , vN of the vertices such that for every m = 0, 1, . . . , N − 1,

vm+1 ∈
(
Γ(v1) ∪ . . . ∪ Γ(vm)

)
\{v1, . . . , vm}, (1.7)

whenever this set is non-empty. We now define the exploration process as


S0 = 1

Sm+1 = Sm +
∣∣∣Γ(vm+1)\({v1} ∪ Γ(v1) ∪ . . . ∪ Γ(vm))

∣∣∣− 1, m ≥ 0.

(1.8)

We may define

Hk := inf{m : Sm = −k + 1}, (1.9)

and then (H1, H2 − H1, H3 − H2, . . .) is the sequence of component sizes in G, in some

order. In particular, for 1 ≤ m ≤ H1, it can be seen from (1.8) by induction that

Sm = |Zm|, where

Z0 := {v1}, Zm :=
(
Γ(v1) ∪ . . . ∪ Γ(vm)

)
\{v1, . . . , vm}, m ≥ 1. (1.10)

Heuristically, we imagine ‘exploring’ the graph one vertex v1, v2, . . . at a time, revealing

neighbours as we go. Then, when we are at vertex vm, Zm is the set of vertices we have

seen but not visited, which we will sometimes refer to as the stack. In Chapter 3 it will

be more convenient to consider the reflected exploration process (Zm)m≥0 defined by

Zm = |Zm|, for m ≥ 0. By construction, this is non-negative, and satisfies

Zm = 1 + Sm − min
k≤m

Sk, m ≥ 0. (1.11)

Examples of orderings

• Aldous [5] uses a breadth-first ordering to investigate the distribution of component

sizes in critical random graphs. We define such an ordering as follows.

We assume the graph has vertex set [N ]. Let v1 be chosen uniformly at random

from [N ]. If v1 has exactly k neighbours, we let v2, . . . , vk+1 be these neighbours
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in increasing order. Then if v2 has exactly l neighbours different to v1, . . . , vk+1,

we let vk+2, . . . , vk+l+1 be these neighbours in increasing order. We continue this

procedure. At any time when {v1, . . . , vm} is a union of connected components of

the graph, we choose vm+1 uniformly at random from the remaining vertices, and

continue until all vertices have been chosen.

In Chapter 2, we use such a breadth-first ordering, but where v2, . . . , vk+1 are

chosen in uniformly random order, and similarly for each set of new neighbours.

This simplifies some proofs by making the exploration process exchangeable.

• A similar construction can be used for a depth-first ordering, where we consider

the descendents of the first offspring of a vertex before we consider any other

offspring or their descendents. Le Gall [42] uses such an ordering v1, v2, . . . , vN

for a tree TN of size N , and considers the height process

hN
0 := 0, hN

m := dTN
(v1, vm), m = 1, . . . , N, (1.12)

where dTN
is the usual graph distance on TN . In many circumstances, we can

profitably extract the height process from the depth-first exploration process. We

will discuss shortly some of the results about limits of trees which follow from

these ideas.

• A further option is to choose an ordering uniformly at random. We can do this

iteratively. Choose v1 uniformly from V (G). Then for each m ≥ 1 in turn, we

choose vm+1 uniformly from Zm as in (1.10), unless Zm = ∅, in which case we

choose vm+1 uniformly from V (G)\{v1, . . . , vm}. We will use this ordering in

Chapter 3 for a multitype exploration process for a graph where each vertex has a

type in [k]. Here the exploration process is Zk-valued. The calculations in this

chapter remain valid under alternative orderings, but this ordering ensures the

exploration process is Markov.

In these examples, whenever we exhaust a component, we choose the next vertex

uniformly at random. There are other possibilities: for example, one could choose the

vertex with the smallest label that hasn’t yet been considered. However, an advantage
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of the uniform choice is that (H1, H2 − H1, H3 − H2, . . .) is the sequence of component

sizes of G in size-biased order.

1.2.2 Exploring random graphs and trees

The heuristic for exploring a random graph is to ‘reveal’ the randomness one vertex at a

time. The exploration process will be particularly tractable when (Sm)m≥0 is Markov.

Galton–Watson trees

Let Tµ be the Galton–Watson tree with offspring distribution µ, as introduced previously,

and let v1, v2, . . . be any ordering of its vertices satisfying v1 = ∅ ∈ U and (1.7), as well

as the following condition. We insist that, conditional on (v1, . . . , vm) and Zm,

the choice of vm+1 is independent of Tµ restricted to U\{v1, . . . , vm}. (1.13)

So the choice of vm+1 may depend on external randomness independent of the tree.

However, this non-look-forward condition says, informally, that the choice of vm+1

depends only on the structure of the subset of the tree which has already been explored,

and not on the descendents of the current stack Zm.

Let (Sm)m≥0 be the corresponding exploration process, which we can rewrite as


S0 = 1

Sm+1 = Sm + c(vm+1) − 1, m ≥ 0.

(1.14)

The number of children c(vm+1) is independent of the number of children of previously-

explored vertices, and so we conclude that (Sm)m≥0 is Markov and has IID increments

distributed as µ − 1.

Remark. The condition (1.13) includes all the examples of orderings given in Section

1.2.1. However, it does not include, for example, the situation where, conditional on

(v1, . . . , vm) and Zm, zm+1 is chosen to be a vertex v ∈ Zm for which c(v) is maximal.
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In general, the exploration process corresponding to this ordering does not have the

Markov property nor IID increments.

In particular, if we take

Sm = 1 − m +
m∑

i=1
ξi, m ≥ 0,

where ξ1, ξ2, . . . are IID with distribution µ, this has the same distribution as the original

exploration process, and thus gives us a method to establish the distribution of the total

population size of Tµ, via (1.9). We use the following result of Dwass [20].

Proposition 1.10 (Hitting time theorem). Let (Sm)m≥0 be a random walk starting at

k ≥ 1, with IID increments supported on {−1, 0, 1, 2, . . .}. Then, with H1 := min{m :

Sm = 0} as before,

P(H1 = N) = k

N
P(SN = 0). (1.15)

Taking this result in the case k = 1, we obtain

P(|Tµ| = N) = P(H1 = N) = 1
N

P(ξ1 + . . . + ξN = N − 1).

Sketch proof of Proposition 1.10. We outline a proof for the case k = 1. See [69] for an

argument for general k ≥ 1 along similar lines. Let x1, . . . , xN be a sequence of integers

such that each xi ≥ −1 and x1 + . . . + xN = −1. Then, it is straightforward to check

that there is exactly one cyclic reordering x′
1, . . . , x′

N of x1, . . . , xN such that

x′
1 + . . . + x′

m ≥ 0, m = 1, . . . , N − 1.

Indeed, let m be the first index for which x1 + . . . + xm achieves its minimum. Then

x′
i := xm+i (with indices taken modulo N) is the unique cyclic reordering with this

property.

Since IID increments ξ1, . . . , ξN are exchangeable, (1.15) follows.
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Erdős–Rényi random graph

We may apply a similar approach to G(N, p). We consider orderings of [N ] satisfying (1.7)

and a non-look-forward condition similar to (1.13). That is, conditional on (v1, . . . , vm)

and Zm,

the choice of vm+1 is independent of G(N, p) restricted to [N ]\{v1, . . . , vm}. (1.16)

Then, given v1, . . . , vm+1 and Γ(v1)∪ . . .∪Γ(vm), we know that Γ(vm+1)\({v1}∪Γ(v1)∪

. . . ∪ Γ(vm)) includes each vertex in

[N ]\({v1} ∪ Γ(v1) ∪ . . . ∪ Γ(vm) ∪ {vm+1}) = [N ]\({v1, . . . , vm+1} ∪ Zm)

independently with probability p. Therefore, conditional on (Z0, Z1, . . . , Zm), we have

from (1.8)

Sm+1 − Sm + 1 d= Bin(N − m − (Zm ∨ 1), p). (1.17)

Note that the term Zm ∨ 1 appears because vm+1 ∈ Zm iff Zm ≥ 1. In particular, for

all m, and conditional on any sequence of values for (Z0, Z1, . . . , Zm), we have

Sm+1 − Sm + 1 ≤st Bin(N − 1, p).

Observe now that the distributions Bern(1 − e−t/N ) and Po(t/N) place the same

probability mass on zero, and so Bern(1 − e−t/N ) ≤st Po(t/N). So, in the particularly

relevant case p = 1−e−t/N , we have, again conditional on any sequence (Z0, Z1, . . . , Zm),

Sm+1 − Sm + 1 ≤st Po
(

N−1
N t

)
≤st Po(t). (1.18)

We can use these estimates to bound in probability the size of the first component seen

in the exploration process, and thus the largest component in G(N, p). We will use such

an argument for a particular class of inhomogeneous random graphs in Chapter 3.

In the case of G(N, p), it is not possible to recover the exact graph structure from the

exploration process, since not all (potential) edges are considered during the process. In
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particular, for each m, it is possible that there are edges between vm+1 and Zm\{vm+1}.

Any such edge forms a cycle with pre-existing edges, and is present independently with

probability p. So, the distribution of G(N, p) can be recovered from the distribution of

the exploration process, by adding each of these potential cyclic edges independently

with probability p.

The seminal example of exploring G(N, p) is Aldous’s study [5] of the critical window,

where p = (1 + λN−1/3)/N . We will introduce this approach fully in Chapter 2, where

we extend the argument to a forest-valued version of the same random graphs.

1.2.3 Local limits

For large N , and small values of m, the stochastic bound given in (1.18) is a good

approximation to the distribution of each increment in the exploration process. In other

words, initially the exploration process of G(N, 1 − e−t/N ) is very close in distribution to

the exploration process of the Galton–Watson tree with Poisson(t) offspring distribution.

So the local graph structure of G(N, 1 − e−t/N ) near some uniformly-chosen vertex is

similar in distribution (for large N) to the Poisson Galton–Watson tree. The following

definition, introduced by Benjamini and Schramm [12], makes this notion precise.

First, we say that two rooted graphs (G, ρ) and (G′, ρ′) are isomorphic if there is a

graph isomorphism from G to G′ that maps ρ to ρ′. Given a rooted graph (G, ρ), and

an integer R ≥ 0, we denote by BR(G, ρ) the induced rooted subgraph of G consisting

of all vertices v ∈ G with dG(ρ, v) ≤ R, still rooted at ρ.

Definition 1.11. Consider a sequence (Gn, ρn) of random finite rooted graphs. We

say that a random rooted graph (G, ρ) is the local weak limit of (Gn, ρn) if for all finite

rooted graphs (H, ρH), and all finite R, the probability that BR(Gn, ρn) is isomorphic to

(H, ρH) converges to the probability that BR(G, ρ) is isomorphic to (H, ρH) as n → ∞.

Consider now a sequence (Gn) of random finite unrooted graphs, and let ρn be a

uniformly-chosen root in Gn. We say a random locally-finite rooted graph (G, ρ) is the

Benjamini–Schramm limit of (Gn) if it is the local weak limit of (Gn, ρn).
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Examples of weak local limits

• Following Benjamini and Schramm [12], we illustrate why the choice of root is

important. Let Bn be the binary tree with n layers, that is, for which |V (Bn)| =

2n − 1. When the usual root is chosen, the local weak limit is the infinite binary

tree. When the root ρn is chosen uniformly at random, the distance of ρn from

the layer of leaves in Bn converges to a geometric distribution with parameter 1/2.

So the Benjamini–Schramm limit of Bn is not the infinite binary tree, but instead

the canopy tree, with a particular root distribution.

We define the canopy tree by construction. Start with the graph on Z≥0 where

there is an edge between m and n precisely when |m−n| = 1. Then, for each n ≥ 1,

we add an edge between vertex n and the root of a copy of Bn. The resulting graph

is the canopy tree. Note that if we delete the edge between vertices n and n + 1,

this splits the tree into two components where the finite component is isomorphic

to Bn+1. To complete the description of the Benjamini–Schramm limit of Bn, we

specify the distribution of the root of the canopy tree by P(ρ = n) = 1
2n+1 , for

every vertex n ∈ Z≥0.

• Consider the Galton–Watson tree Tµ corresponding to a critical offspring distri-

bution µ with ∑ kµk = 1 and finite variance. Then for each n ≥ 1, let Tn be the

random rooted tree given by conditioning Tµ to have total population size equal

to n. Then the local weak limit as n → ∞ is the size-biased Galton–Watson tree,

an infinite tree introduced by Kesten [38], where vertices have one of two types:

vertices on the (unique) infinite spine have the size-biased version of µ as their

offspring distribution; and other vertices have the usual offspring distribution.

• The Benjamini–Schramm limit of G(N, c/N) is the Galton–Watson tree with

Poisson(c) offspring distribution. This comparison is particularly useful in the

supercritical regime, where c > 1, for which, with high probability, the size of

the largest component |CN
1 | = (1 + o(1))ζcN with high probability, where ζc

is the survival probability of the corresponding Galton–Watson process. The

following heuristic applies. From the local limit, ζc gives the probability that a



1.2 Exploration processes and limits 19

uniformly-chosen vertex is in a ‘large’ component, and then asymptotically almost

all vertices in such large components are, with high probability, in the same giant

component. Full details of this argument can be found in Section 4.4 of van der

Hofstad’s book [68].

1.2.4 Scaling limits

As well as the typical local structure of large trees and graphs, we are also interested

in the global properties of such objects. In some circumstances one can characterise

asymptotic properties of trees via some continuous ‘tree-like’ limit object, such as

Aldous’s Brownian continuum random tree [3].

There are several ways to characterise this convergence formally. One might show

that some functionals of the large trees, such as the exploration processes we have

introduced, converge in distribution as processes (possibly after rescaling) to some

corresponding process associated with the limit tree. For example, consider the height

process (hN
m, m = 0, 1, . . . , N) for a uniform rooted tree on [N ], as defined at (1.12).

We use the formulation of Le Gall [42], although Aldous [4] shows the same result for

the closely-related contour process.

THEOREM 1.12. [42, Theorem 1.15] Let (Bex(t), 0 ≤ t ≤ 1) be a standard Brownian

excursion. Then

1√
N

(
hN

⌊Nt⌋, 0 ≤ t ≤ 1
)

d→ 2(Bex(t), 0 ≤ t ≤ 1), (1.19)

as N → ∞, in D([0, 1],R≥0), the space of non-negative càdlàg functions with the

Skorohod topology.

More recently, there has been much interest in showing convergence of the trees them-

selves, viewed as metric spaces. Le Gall [43] shows a version of (1.19) for the trees

themselves with respect to the Gromov–Hausdorff topology. Many subsequent authors

have extended these results to other settings, including Addario–Berry, Broutin and
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Goldschmidt [1], who show a metric space limit for the connected components of G(N, p)

in the critical window p = (1 + λN−1/3)/N .

For the purposes of this thesis, convergence of exploration processes is all we require.

In particular, consider the exploration process (SN
m , m = 0, 1, . . . , N) derived from the

breadth-first ordering of a uniform tree on [N ] where in each round the new stack

vertices are ordered uniformly at random, as in the first example of Section 1.2.1. Then

we have a similar result

Proposition 1.13. As N → ∞

1√
N

(
SN

⌊Nt⌋, 0 ≤ t ≤ 1
)

d→ 2(Bex(t), 0 ≤ t ≤ 1), (1.20)

in D([0, 1],R≥0).

By Proposition 1.8, it suffices to check the corresponding result for Galton–Watson

trees conditioned to have size N . But the exploration process for a Galton–Watson tree

has IID increments as in (1.14). Kaigh [37] proves a version of Donsker’s theorem for

convergence of random walks conditioned on a particular large value for the hitting

time of zero, and we can use this to derive the result (1.20) directly.

Note. Though we state Proposition 1.13 for a specific ordering, it will hold for the

exploration processes corresponding to any ordering satisfying a non-look-forward

condition analogous to (1.13) and (1.16). This version is all we require in Chapter 2,

and avoids the requirement to introduce notation to explain in general how to pass

between the non-look-forward condition in the uniform tree and the non-look-forward

condition in the Galton–Watson tree.

1.3 Self-organised criticality

In nature, we observe systems which are updated by simple local rules, where occasionally

the effects of a single event spread quickly through a large proportion of the system.

Bak, Tang and Wiesenfeld [11] introduced the sandpile model as an intuitively simple

mathematical example. Here, piles of sand accumulate at each point on some lattice,
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until the height of a pile exceeds some threshold value. At this point the pile collapses

completely, and all its grains of sand are redistributed equally among neighbouring piles,

which may then themselves collapse. In this way, a single extra grain may trigger an

‘avalanche’ which spreads through the entire system. This property is sometimes termed

long-range correlation, as parts of the system are occasionally affected by events which

start a large distance away.

These same authors coined the phrase self-organised criticality in [10] to describe the

qualitative properties of this model, where the system is driven to criticality by the

dynamics, from a broad class of initial conditions. Criticality could be characterised

in several ways, but the easiest condition to verify across a broad range of models is

that the distribution of the size of an event in the model has a power-law tail. In the

case of sandpiles, this is taken to be the number of sites affected by an avalanche. In

a graph-based model, it could be the sizes of components, or the sizes of components

affected by a destructive event.

Note that the distribution of component-sizes in G(N, 1/N) has a power-law tail.

However, in the Erdős–Rényi random graph, this criticality is achieved only by fine-

tuning the parameter, rather than through self-organisation. In the main examples, the

local dynamics are mostly monotonic, with occasional macroscopic destructive events

acting in the opposite direction to prevent the system becoming supercritical.

Our main focus will be on mean-field frozen percolation and forest fires, two versions of

the random graph process which exhibit self-organised criticality.

1.3.1 Mean-field frozen percolation

The frozen percolation process on a graph G was introduced by Aldous [8] in the

case where G is the infinite binary tree. Informally, we perform classical percolation,

with the restriction that ‘components are not allowed to participate in the dynamics

once they become infinite’. It is important to note that when G is an infinite graph,

constructing a well-defined version of such a process is technically challenging, and

sometimes impossible.
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A mean-field version of frozen percolation on the complete graph on N vertices was

considered by Ráth [60] as a modification of the Erdős–Rényi random graph process.

Initially, all the N vertices are declared to be alive, and there may be some (possibly

randomly chosen) edges present. Between any pair of alive vertices, edges appear at

rate 1/N , as in the random graph process, but each vertex also carries an independent

exponential clock with rate λ(N). When the clock rings, we say the vertex has been

struck by lightning, and this vertex, and all vertices in its component at that time are

declared frozen (or dead). Frozen vertices can never become alive again, so as time

advances, the number of alive vertices decreases. Throughout this thesis, we will assume

that the lightning rate is chosen with critical scaling such that

1/N ≪ λ(N) ≪ 1. (1.21)

The heuristic is that for large N , small components are never struck by lightning, while

giant components are immediately struck by lightning.

We let GN (t) be the graph of alive vertices at time t, and

vN
k (t) := 1

N
#{alive vertices in size k components at time t}, k ≥ 1, t ≥ 0.

We note that (vN (t), t ≥ 0) is a Markov process on ℓ1. Typically we consider such a

process for N ∈ A, some infinite subset of N, and limiting behaviour as N → ∞, when

vN (0) converges to a limiting initial distribution v(0).

Ráth [60] shows that when vN (0) = v(0) for all N ∈ A, and v(0) has finite support,

then vN d→ v as N → ∞ in D([0, T ], ℓ1) for any T > 0. Here v = (vk(t), k ≥ 1, t ≥ 0) is

the (unique) solution to Smoluchowski’s equation (1.4). The self-organised criticality of

this model is described via the tails of the limit process, that is the solution to (1.4).

Ráth shows that for any solution to (1.4) where the initial distribution v(0) has finite

support, for any t ≥ Tg,

∑
ℓ≥k

vk(t) = Θ
(
k−1/2

)
, k → ∞. ([60], Theorem 1.5)
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We note the requirement that this deterministic initial distribution vN (0) = v(0) apply

for all N . Since vN (0) ∈ ZN
≥0/N by construction, except in the monodisperse case

v(0) = (1, 0, 0, . . .), this forces us to consider only QN
≥0-valued v(0), and convergence

only along an appropriate subsequence.

In Chapter 4, we will introduce this result in more detail and prove a version for a

sequence of mean-field frozen percolation models with initial conditions suitable for our

application, in particular without the requirement that v(0) have finite support.

1.3.2 Mean-field forest fires

The mean-field forest fire is a similar process on the complete graph on N vertices,

introduced by Ráth and Tóth [61], defined as follows. As in mean-field frozen percolation,

the initial graph on [N ] may include some edges (possibly randomly chosen). Between

any pair of vertices, edges appear at rate 1/N , as in the classical random graph process.

Now though, to each vertex we associate an independent Poisson process with rate

λ(N), and we interpret points of each Poisson process as times when the corresponding

vertex is struck by lightning. When a vertex is struck by lightning, all the edges in that

vertex’s current component are removed, reducing the component to a collection of

isolated vertices.

So, in contrast to frozen percolation, the number of vertices is preserved in the forest fire

process, at the expense of monotonicity. Ráth and Tóth assume again that the lightning

rate is chosen such that 1/N ≪ λ(N) ≪ 1, for identical reasons to frozen percolation.

That is, small components are ‘never’ affected by lightning, while giant components are

‘immediately’ broken into singleton vertices. Again, Ráth and Tóth consider

vN
k (t) := 1

N
#{vertices in size k components at time t}, k ≥ 1, t ≥ 0.

They introduce the following modified Smoluchowski equations to approximate the

evolution of (vN (·)) when N is large.

d
dt

vk(t) = k

2

k−1∑
ℓ=1

vℓ(t)vk−ℓ(t) − kvk(t), k ≥ 2, (1.22)
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∑
k≥1

vk(t) = 1, t ≥ 0.

It is important to note that these equations do not directly describe the evolution of

v1(·). Instead, the second equation controls v1 implicitly, by fixing the total mass to

be constant. In particular, unlike the Flory equations (1.6), it is not possible to solve

(1.22) for each k by induction.

Ráth and Tóth show that whenever ∑ k3vk(0) < ∞, there exists a unique solution to

the modified Smoluchowski equations (1.22). Their argument involves showing that an

exponential generating function corresponding to (vk(t)) satisfies a version of the Burgers

control problem. They also show a convergence result for the discrete processes, which

is improved slightly by Crane, Freeman and Tóth [18]. The latter authors show that

when (vN (·)) corresponds to a sequence of mean-field forest fire processes and satisfies

vN
k (0) → vk(0) for each k ∈ N as N → ∞, and where v(0) satisfies ∑ k3vk(0) < ∞,

then for every T > 0,

sup
k∈N

sup
t∈[0,T ]

|vN
k (t) − vk(t)| d→ 0,

as N → ∞, where v(·) is the unique solution to (1.22).

As Ráth and Tóth explain, the modified Smoluchowski equations (1.22) admit a sta-

tionary solution

vk(∞) := 2
k

(
2k − 2
k − 1

)
4−k. (1.23)

However, the distribution in (1.23) does not satisfy the third-moment condition∑
k≥1 k3vk(∞) < ∞, and so, counterintuitively, it is currently not known whether the

stationary solution is the unique solution to (1.22) with these initial conditions. In

addition, it is plausible that any solution to the modified Smoluchowski equations

converges as t → ∞ to v(∞), but this is also open.

Settling these questions motivates the model of frozen percolation with k types considered

in Chapter 5. We will explain this relation in more detail in Section 5.1.3.



Chapter 2

Critical random forests

In this self-contained chapter, we review Aldous’s results [5] about the distribution of

the sequence of component-sizes in G(N, p), when p = p(N) lies in the critical window

p(N) = 1+λN−1/3

N . Aldous describes the scaling limit for the largest such components

in terms of the excursions of a reflected Brownian motion with time-dependent drift.

We prove a similar result for the random forest obtained by conditioning G(N, p) to

have no cycles, for the same range of p. We describe a scaling limit for the largest

components of such a critical random forest, but now using a reflected diffusion whose

drift is space-dependent as well as time-dependent.

2.1 Background

2.1.1 The critical window

In Section 1.1.1, we discussed the phase transition of the sparse Erdős–Rényi random

graph G(N, c/N) at c = 1. As with many phase transitions, the asymptotic behaviour

for c = 1 is qualitatively different from the asymptotic behaviour both for c < 1 and

for c > 1. By looking at finer scalings for which Np(N) → 1, we can examine exactly

how this transition from a graph with logarithmic components to a graph with a giant

component takes place.
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• When Np(N) → 1 and N1/3[Np(N) − 1] → −∞, Bollobás [13], who later calls

this the barely subcritical regime, shows that the largest component has size

(1 + o(1))2 log(ϵ3N)
ϵ2 with high probability, where ϵ(N) = 1 − Np(N).

• Bollobás [13] also treats the barely supercritical regime where Np(N) → 1 and
N1/3

log N [Np(N) − 1] → +∞. In this case, the largest component has size 2ϵ(1 + o(1))

with high probability, where ϵ(N) = Np(N) − 1. Furthermore, the ratio between

the size of the largest component and the size of the second-largest component is

asymptotically infinite. Łuczak [44] shows the same result for the extended range

N1/3[Np(N) − 1] → +∞.

• In [44], Łuczak studies further the regime between these subcritical and supercrit-

ical behaviours, and establishes the precise scaling range of the critical window,

p(N) = 1+λN−1/3

N for λ ∈ R. For such p, G(N, p) shares the property of G(N, 1/N)

that for each fixed k ∈ N, the kth largest component has size Θp(N2/3). However,

as we shall see shortly, different values of λ ∈ R lead to different asymptotic

distributions for the component-size sequence.

2.1.2 Exploring a random graph in the critical window

Recall the definition of the breadth-first exploration process (Sm)m≥0, and the application

to G(N, p) introduced in Section 1.2.2. The key observation is that the increments

of this exploration process are binomial random variables. Recall from (1.17) that,

conditional on (Z0, Z1, . . . , Zm),

Sm − Sm−1
d= Bin(N − m − (Zm ∨ 1), p) − 1. (2.1)

Take (SN,λ
m )m≥0 to be the exploration process, and (ZN,λ

m )m≥0 the reflected explo-

ration process associated to the random graph G(N, 1+λN−1/3

N ), and define the rescaled

exploration process and reflected exploration process respectively as

S̃N,λ(s) := N−1/3SN,λ

⌊N2/3s⌋, Z̃N,λ(s) := N−1/3ZN,λ

⌊N2/3s⌋. (2.2)
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It can be shown that when both N and m are large, with high probability Zm ≪ m.

Therefore, when m = sN2/3, the expectation of the increment in (2.1) is approximately

(λ − s)N−1/3. The motivates considering a Brownian motion with drift λ − s at time s.

Definition 2.1. For fixed λ ∈ R, let W be a standard Brownian motion and let

W λ(s) := W (s) + λs − 1
2s2.

We call W λ a parabolically-drifting Brownian motion. Then define

Bλ(s) := W λ(s) − min
s′∈[0,s]

W λ(s′), (2.3)

to be the corresponding reflected parabolically-drifting Brownian motion. We also define

Cλ
1 ≥ Cλ

2 ≥ . . . to be the lengths of the excursions of Bλ above zero, arranged in

decreasing order.

Let CN,λ
1 ≥ CN,λ

2 ≥ . . . be the sizes of the components of G(N, 1+λN−1/3

N ), in decreasing

order. Aldous’s main result is:

THEOREM 2.2. [5, Theorem 2] For any λ ∈ R, the convergence

N−2/3(CN,λ
1 , CN,λ

2 , . . .) d→ (Cλ
1 , Cλ

2 , . . .),

holds as N → ∞ with respect to the ℓ2
↘ topology.

The main ingredient is the following:

THEOREM 2.3. [5, Theorem 3] For any λ ∈ R, S̃N,λ → W λ uniformly on compact

intervals in distribution.

2.1.3 Critical forests and results

Definition 2.4. Let FA be the set of forests with vertex set A. We will use the

shorthand FN for the set of forests on [N ]. In this chapter, we consider Ḡ(N, p), an

FN -valued random variable, given for N ∈ N and p ∈ [0, 1) by conditioning G(N, p) on



28 Critical random forests

the event that it contains no cycles. We call Ḡ(N, p) an acyclic random graph, and it is

an example of a random forest.

From now on, we take (SN,λ
m )m≥0 to be the following exploration process of Ḡ

(
N, 1+λN−1/3

N

)
.

To make proofs easier, it will be convenient if the sequence (v1, v2, . . . , vN ) of vertices

in exploration order is breadth-first, as introduced in Section 1.2.1, but with each set of

children in random order. That is, we choose v1 uniformly at random from [N ]. Then

if v1 has exactly k neighbours, we let v2, . . . , vk+1 be these neighbours in uniformly

random order. Now proceed similarly for the neighbours of v2, and so on, choosing

the next vertex uniformly at random from those that remain whenever a component is

exhausted.

We define (ZN,λ
m )m≥0 to be the corresponding reflected exploration process.

The goal of this chapter is to derive a result similar to Theorem 2.2 for Ḡ
(
N, 1+λN−1/3

N

)
.

A reflected SDE

We define the following function

g(x) = 1
π

∫ ∞

0
exp(−4

3 t3/2) cos(xt + 4
3 t3/2)dt, (2.4)

which is the density of a stable distribution with parameter 3/2 that we will introduce

in more detail in Section 2.1.4. Then, we define

α(b, λ) :=
∫∞

0 a−1/2g(λ − a) exp
(

(λ−a)3

6

)
exp(− b2

2a)da∫∞
0 a−3/2g(λ − a) exp

(
(λ−a)3

6

)
exp(− b2

2a)da
, b > 0, λ ∈ R. (2.5)

Lemma 2.5. The function g defined in (2.4) is positive, bounded, uniformly continuous,

and satisfies g(x) → 0 as x → ±∞. Furthermore, the function α is well-defined, and

increasing in its first argument, and satisfies α(b, λ) → 0 as b ↓ 0, uniformly on λ in

compact intervals.

We prove all these properties as part of Lemmas 2.22, 2.23, 2.25, and Proposition 2.26

in Section 2.2.6. This function α(b, λ) will be the additive correction one must make
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to the drift of the rescaled exploration process in order to account for the condition of

acyclicity, when the height is b.

Proposition 2.6. Consider a standard Brownian motion W (·) with natural filtration

FW . For each λ ∈ R, there exists a unique pair of FW -adapted non-negative processes

Zλ, Kλ satisfying:


Zλ(0) = 0,

dZλ(t) =
[
λ − t − α

(
Zλ(t), λ − t

)]
dt + dW (t) + Kλ(t),

(2.6)

where Kλ(·) is continuous and increasing, with Kλ(0) = 0, and
∫∞

0 Zλ(s)dKλ(s) = 0.

This result will be proved in Section 2.2.7, and relies on a local Lipschitz property for α

which is established in Section 2.2.6. We say Zλ is a solution to the reflected SDE (2.6).

Convergence

Recall that ZN,λ is the reflected exploration process of Ḡ(N, 1+λN−1/3

N ). For s ≥ 0 let

Z̃N,λ
s := N−1/3ZN,λ

⌊N2/3s⌋.

From now on, we fix λ ∈ R and let Cλ
1 ≥ Cλ

2 ≥ . . . be the lengths of the excursions of

Zλ above zero, arranged in decreasing order. Also, let CN,λ
1 ≥ CN,λ

2 ≥ . . . be the sizes of

the components of the graph Ḡ(N, 1+λN−1/3

N ), in decreasing order. We define ℓ2
↘ to be

the set of non-increasing sequences equipped with the ℓ2-topology. Our main result is

THEOREM 2.7. The convergence

N−2/3(CN,λ
1 , CN,λ

2 , . . .) d→ (Cλ
1 , Cλ

2 , . . .), (2.7)

holds as N → ∞ in ℓ2
↘.

The main ingredient is the following convergence result for the rescaled exploration

processes, analogous to Aldous’s Theorem 2.3.



30 Critical random forests

THEOREM 2.8. For each λ ∈ R, we have

Z̃N,λ d→ Zλ, (2.8)

uniformly on compact time-intervals.

The proof of Theorem 2.8 is given in Section 2.2. A few technical details, mostly

related to the fact that α is not globally Lipschitz, are treated in Sections 2.2.6 and

2.2.7. We will proceed by showing that the increments of these discrete (reflected)

exploration processes have expectation and variance which match asymptotically the

coefficients of (2.6). Convergence of the drift is the main challenge, and we require a

technically-involved calculation to treat a binomial distribution tilted by a sequence

enumerating a class of weighted forests.

Theorem 2.7 follows from Theorem 2.8, but a more technical argument is required here

than for unreflected exploration processes. We will use the fact that the components of

Ḡ(N, p) are, conditional on their size, uniform trees. This argument occupies Section

2.3.

2.1.4 Acyclic random graphs and enumerating forests

We will make particular use of a result of Britikov [16] that provides asymptotics for

f(N, m), the number of forests on [N ] with exactly m edges. Such a forest has exactly

N − m trees, and so

f(N, m) = N !
(N − m)!

∑
k1+...+kN−m=N

ki≥1

N−m∏
j=1

k
kj−2
j

kj ! ,

which suggests that an argument using generating functions and Bell polynomials will

be applicable. (A comprehensive general introduction to such methods can be found

in Chapter 1 of Pitman’s notes [59].) Britikov defines a random variable ξ with a
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distribution parameterised by a constant x ∈ R+ such that

P(ξ = k) ∝ kk−2xk

k! , with normalising constant B(x) =
∑
k≥1

kk−2xk

k! .

This normalising constant B(x) is finite precisely when x ≤ 1/e. Taking ξ1, ξ2, . . . to be

IID copies of ξ, we obtain

f(N, m) = N !
(N − m)!

B(x)N−m

xN
P(ξ1 + . . . + ξN−m = N).

Thus laws of large numbers for ξ give asymptotics for f(N, m). For the range of m we

will be interested in, it is most relevant to consider x = 1/e, for which ξ is in the domain

of attraction of a particular stable law with parameter 3/2. The density of this stable

law is g(x), as defined in (2.4). The relevant regime of Britikov’s result is summarised

by Łuczak and Pittel in [45]:

Lemma 2.9. [45, Lemma 2.1.ii] For any constant c > 0, as N → ∞,

f(N, m) = (1 + o(1))
√

2πNN−1/6

2N−m(N − m)!g
(2m − N

N2/3

)
, (2.9)

uniformly for m satisfying |2m − N |3/N2 ≤ c.

As we shall see in the proof of our main result, it follows from this that the asymptotic

probability that G(N, p) is acyclic in this regime is Θ(N−1/6). A precise statement and

proof appears as Lemma 2.17 to follow.

2.1.5 Preliminary results

Before starting the main proof, we state a lemma providing a useful relation between

G(N, p) and Ḡ(N, p), which we will use repeatedly throughout the chapter.

Lemma 2.10. For all N ∈ N, p ∈ [0, 1), there exists a coupling of G(N, p) and Ḡ(N, p)

such that E(Ḡ(N, p)) ⊆ E(G(N, p)) almost surely.
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Proof. Let PN,p and P̄N,p be the laws of G(N, p) and Ḡ(N, p) respectively, on the set of

graphs with vertex set [N ], which is equivalent to {0, 1}([N ]
2 ). By Strassen’s theorem

[65], it suffices to show that P̄N,p(B) ≤ PN,p(B) for all increasing events B ⊆ {0, 1}([N ]
2 ).

Since PN,p is product measure on the set of possible edges, the Harris inequality [31]

applies. In this setting, the most useful statement of this result is

PN,p(B ∩ Ac) ≥ PN,p(B)PN,p(Ac),

for A any decreasing event, and B any increasing event. Here, take A to be the decreasing

event that the graph is acyclic. From this it follows directly that PN,p(B|A) ≤ PN,p(B),

that is P̄N,p(B) ≤ PN,p(B).

Janson and Spencer [34] give another description of the limit of component sizes in the

critical window for G(N, p). The following result is a consequence of their Theorem 4.1.

Proposition 2.11. Fix λ ∈ R. If |CN,λ(v)| is the size of the component containing a

uniformly-chosen vertex v in G
(
N, 1+λN−1/3

N

)
, then there exists Θλ ∈ (0, ∞) such that

N−1/3E
[
|CN,λ(v)|

]
→ Θλ,

as N → ∞. Thus by Lemma 2.10, if we now let |CN,λ(v)| be the size of the component

containing a uniformly-chosen vertex in the conditioned graph Ḡ(N, 1+λN−1/3

N ), we have

lim sup
N→∞

N−1/3E
[
|CN,λ(v)|

]
≤ Θλ. (2.10)

Note. From the coupling (1.1), Θλ is increasing as a function of λ, and Θλ → 0 as

λ → −∞.

2.2 Convergence of the reflected exploration process

We will show shortly that the reflected exploration process ZN,λ has the Markov property.

To show Theorem 2.8, we must check that the expected increments of the rescaled

process Z̃N,λ converge to the drift term in (2.6), uniformly in some sense.
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Proposition 2.12. Fix T, K < ∞, and λ ∈ R. Then, uniformly on m ∈ [0, TN2/3] and

r ∈ [1, ρN1/3],

N1/3E
[
ZN,λ

m+1 − ZN,λ
m | ZN,λ

m = r
]

−
[
λ − m

N2/3 + α
(

r
N1/3 , λ − m

N2/3

)]
→ 0, (2.11)

as N → ∞.

The proof of this proposition is completed in Section 2.2.4, after some preliminary

asymptotic calculations concerning forests in random graphs.

It is also necessary to establish the convergence of the variance of the rescaled increments,

and regularity properties that ensure the limit process is continuous and does not stick

at zero.

Proposition 2.13. For any δ > 0 uniformly on m ∈ [0, TN2/3] and r ∈ [1, ρN1/3],

E
[[

ZN,λ
m+1 − ZN,λ

m

]2 ∣∣∣ZN,λ
m = r

]
→ 1, (2.12)

N2/3P
(∣∣ZN,λ

m+1 − ZN,λ
m

∣∣ > δN1/3
∣∣∣ZN,λ

m = r
)

→ 0, (2.13)

as N → ∞. In addition,

lim inf
N→∞

inf
m∈[0,T N2/3]

E
[[

ZN,λ
m+1

]2 ∣∣∣ZN,λ
m = 0

]
> 0. (2.14)

The proof of this proposition occupies Section 2.2.5.

In Section 2.2.7, we explain how this pair of propositions is sufficient for Theorem 2.8.

The main ingredient will be Theorem 2.28, a special case from Stroock and Varadhan’s

very general results [66] on the convergence of Markov processes to reflected diffusions.

2.2.1 Stack forests

Definition 2.14. For a graph G, we say a set A ⊆ V (G) is separated in G if no pair of

vertices in A lie in the same component of G.
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Recall from Section 2.1.3 that we are considering a breadth-first exploration process of

Ḡ(N, p) with uniform ordering within each set of children. For the remainder of this

short section, we will suppress the dependence on N and p from the notation for the

exploration process, since the result to follow holds for all p ∈ (0, 1). Then Zm is the

stack of vertices which have been seen but not explored yet. Note that all the vertices in

Zm are in the same component of Ḡ(N, p), since components are explored one-by-one.

In particular, in the graph restricted to [N ]\{v1, . . . , vm}, no pair of vertices in Zm

lie in the same component, as otherwise there would be a cycle in Ḡ(N, p). We refer

to the Zm trees on [N ]\{v1, . . . , vm} containing each v ∈ Zm as the stack forest, as in

Figure 2.1. We can see that the vertices in Zm are separated in the restricted graph on

[N ]\{v1, . . . , vm}.

Fig. 2.1 Illustration of the definition of stack forest

Now, suppose we condition on {v1, . . . , vm} ∪ Zm, and the structure of Ḡ(N, p) on

these m + Zm vertices. Then, the graph restricted to [N ]\{v1, . . . , vn} has the same

distribution as

Ḡ([N ]\{v1, . . . , vn}, p),

with the extra condition that no pair of vertices from Zm lie in the same component.

We expand this explanation considerably in the proof of the following lemma, which for-

malises the claim that (Zm)m≥0 is Markov, and characterises its transition probabilities

via separation of the current stack in the remainder of the graph.
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Lemma 2.15. For any m ≥ 0, and r ≥ 1,

P
(
Zm+1 − Zm = ℓ − 1

∣∣Zm = r, Zm−1 = rm−1, . . . , Z1 = r1
)

(2.15)

∝
(

N − m − r

ℓ

)
pℓ(1 − p)N−m−r−ℓP

(
[r + ℓ − 1] separated in Ḡ(N − m − 1, p)

)
,

for ℓ = 0, 1, . . . , N − m − r.

Proof. Because the vertices are exchangeable in both Ḡ(N, p) and the exploration

process, the LHS of (2.15) is unchanged by conditioning further on which vertices are

seen during the initial phase of the exploration process. That is, if we define the event

B :=
{

Zm = r, Zm−1 = rm−1, . . . , Z1 = r1, (v1, . . . , vm) = (1, . . . , m),

Zm = {m + 1, . . . , m + r}
}

then

P
(
Zm+1 − Zm = ℓ − 1

∣∣Zm = r, Zm−1 = rm−1, . . . , Z1 = r1
)

(2.16)

= P
(
Zm+1 − Zm = ℓ − 1

∣∣B).
Note that B is defined in terms of (r1, . . . , rm−1, r). Also note that since Ḡ(N, p) is

acyclic, this richer conditioning exactly specifies the neighbourhoods of vertices 1, . . . , m.

That is,

B ⇒ Γ(i) = Ai, ∀i ∈ [m], (2.17)

where each Ai ⊆ [m + r] is also a function of (r1, . . . , rm−1, r). Furthermore, on B, the

number of edges in the graph incident to at least one vertex in [m] is a constant, say e[m],

depending on (r1, . . . , rm−1, r). Obviously, the converse direction of (2.17) is generally

false since there are extra sources of randomness in the construction of the exploration

process. However, we can show the Markov property by restricting attention to those

forests on [N ] for which the conclusion of (2.17) holds.
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Let AN be the set of forests H on [N ] for which ΓH(i) = Ai for i ∈ [m]. Then, we claim

that

P
(
(v1, . . . , vm) = (1, . . . , m)

∣∣ Ḡ(N, p) = H
)

is the same for every H ∈ AN .

This claim follows because, in turn, each vi depends only on a uniform choice from the

remaining N − i + 1 vertices in the graph (in the case of starting a new component), or

a uniform choice of orderings of |ΓH(j)| neighbours, for some j < i (otherwise).

Consider any H ∈ AN . Given that Ḡ(N, p) = H, the event B holds if and only if

(v1, . . . , vm) = (1, . . . , m). Therefore

P
(
B
∣∣ Ḡ(N, p) = H

)
is the same for every H ∈ AN . (2.18)

Now let A′
N be the set of forests H ′ on [N ]\[m] for which {m + 1, . . . , m + r} are

separated. There is a bijection AN → A′
N given by restricting the vertex set. Note

that, while AN depends on the whole sequence (r1, . . . , rm−1, r), the restricted set A′
N

depends only on r. So

P
(
Zm+1 − Zm = ℓ − 1

∣∣B)
∝

∑
H∈AN

P
(
B
∣∣ Ḡ(N, p) = H

)
P
(
Ḡ(N, p) = H

)
1{degH|[N ]\[m]

(m + 1) = ℓ}

(2.18)
∝

∑
H∈AN

P
(
Ḡ(N, p) = H

)
1{degH|[N ]\[m]

(m + 1) = ℓ}

∝
∑

H∈AN

p|E(H)|(1 − p)
∣∣([N ]

2 )\E(H)
∣∣
1{degH|[N ]\[m]

(m + 1) = ℓ}

∝ pe[m](1 − p)Nm−(m
2 )−e[m]

×
∑

H′∈A′
N

p|E(H′)|(1 − p)
∣∣([N ]\[m]

2 )\E(H′)
∣∣
1{degH′(m + 1) = ℓ}

∝
∑

H′∈A′
N

p|E(H′)|(1 − p)
∣∣([N ]\[m]

2 )\E(H′)
∣∣
1{degH′(m + 1) = ℓ}.

Note that H ′ ∈ A′
N implies that ΓH′(m + 1) ∩ {m + 2, . . . , m + r} = ∅. Then,

exchangeability of the vertices {m + r + 1, . . . , N} allows us to consider a specific
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neighbourhood of vertex m + 1 in H ′, rather than merely its degree.

P
(
Zm+1 − Zm = ℓ − 1

∣∣B) ∝
(

N − m − r

ℓ

)

×
∑

H′∈A′
N

p|E(H′)|(1 − p)
∣∣([N ]\[m]

2 )\E(H′)
∣∣
1{ΓH′(m + 1) = {m + r + 1, . . . , m + r + ℓ}}.

Now, simply by removing vertex m + 1, there is a bijection between the set of forests

H ′ ∈ A′
N for which ΓH′(m + 1) = {m + r + 1, . . . , m + r + ℓ} and the set of forests on

[N ]\[m + 1], for which {m + 2, . . . , m + r + ℓ} are separated. Recall from Definition 2.4

the notation F[N ]\[m+1] for the set of forests on [N ]\[m + 1]. We then have

P
(
Zm+1 − Zm = ℓ − 1

∣∣B) ∝
(

N − m − r

ℓ

)(
p

1 − p

)ℓ

×
∑

F ∈F[N ]\[m+1]

p|E(F )|(1−p)
∣∣([N ]\[m+1]

2 )\E(F )
∣∣
1{{m + 2, . . . , . . . , m + r + ℓ} separated in F}.

Then, considering the sum as the probability of an event in the weighted random forest

on N − m − 1 vertices, we obtain

P
(
Zm+1 − Zm = ℓ − 1

∣∣B) ∝
(

N − m − r

ℓ

)
pℓ(1 − p)N−m−r−ℓ

P
(
[r + ℓ − 1] separated in Ḡ(N − m − 1, p)

)
,

and so the required statement follows using (2.16).

We want to quantify exactly how large a probabilistic penalty is incurred by adding an

extra vertex to the stack, and so will consider limits of the quantity

P
(
[r + ℓ] separated in Ḡ(N − m − 1, p)

)
P
(
[r + ℓ − 1] separated in Ḡ(N − m − 1, p)

) .

Given a graph in which [r + ℓ − 1] are separated, the conditional probability that r + ℓ

is also separated depends on the size of the stack forest rooted by [r + ℓ − 1]. So we

will calculate the expected size of a stack forest in Section 2.2.3. It will be useful to

have precise asymptotics for the probability that G(N, p) is acyclic, which we derive in
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Section 2.2.2. We then use this to calculate the probability that the stack forest has a

particular size.

2.2.2 Enumerating weighted stack forests

In this first section, we consider the probability that G(N, p) is acyclic. Recall f(N, m)

is the number of forests with vertex set [N ] and exactly m edges. Therefore

P(G(N, p) acyclic) = (1 − p)(
N
2 )

N−1∑
m=0

f(N, m)
(

p

1 − p

)m

. (2.19)

We call this quantity F (N, p).

Lemma 2.16. For any N ≥ 0 and any p ∈ (0, 1),

F (N, p) ≥ F (N + 1, p) ≥ F (N, p)
[
1 − 1

2Np2E
[
|CN,p(v)|

]]
, (2.20)

where CN,p(v) is the component containing a uniformly-chosen vertex v in G(N, p).

Proof. Graphs with zero, one or two vertices are certainly acyclic, so F (0, p) = F (1, p) =

F (2, p) = 1, the statement is true for N = 0, 1. We assume from now on that N ≥ 2.

We can define a forest on [N + 1] via the restriction to [N ] (which is clearly also a forest)

and the neighbourhood of vertex N + 1, where the latter must obey some conditions

to avoid cycles. We take P to be a probability distribution which couples G(N, p) and

G(N + 1, p) such that E(G(N, p)) ⊆ E(G(N + 1, p)), P-a.s. Recall that in a graph G,

for v ∈ V (G), Γ(v) is the set of vertices connected to v by an edge in E(G). Then

F (N + 1, p) = F (N, p)P
(
Γ(N + 1) separated in G(N, p)

∣∣G(N, p) acyclic
)
,

and so the first inequality in (2.20) certainly holds. Now, for any set A ⊆ [N ], the

event that A is separated in G is decreasing, while the event that G is acyclic is also

decreasing. So, again by the Harris inequality,

F (N + 1, p) ≥ F (N, p)P(Γ(N + 1) separated in G(N, p)),
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and so

1 − F (N + 1, p)
F (N, p) ≤ P(Γ(N + 1) not separated in G(N, p)). (2.21)

Observe that the event that Γ(N + 1) is not separated in G(N, p) is the union over

i, j ∈ [N ] of the events

{i, j both in Γ(N + 1) and both in the same component of G(N, p)}.

Thus, by exchangeability of the vertices in [N ],

P(Γ(N + 1) not separated in G(N, p)) ≤
(

N

2

)
p2 P(1 and 2 in same component of G(N, p)).

Then, if |CN,p(1)| is the size of the component of G(N, p) containing vertex 1,

P(1 and 2 in same component of G(N, p)) =
E
[
|CN,p(1)|

]
− 1

N − 1 .

We conclude that

P(Γ(N + 1) not separated in G(N, p)) ≤
(

N

2

)
p2·

E
[
|CN,p(1)|

]
− 1

N − 1 ≤ 1
2Np2E

[
|CN,p(1)|

]
,

from which the result follows, using (2.21) and the fact that the vertices in G(N, p) are

exchangeable.

Recall the definition (2.19):

F (N, p) := P(G(N, p) acyclic) = (1 − p)(
N
2 )

N−1∑
m=0

f(N, m)
(

p

1 − p

)m

.

Now, using the asymptotics for f(N, m) in (2.9), we obtain asymptotics for F (N, p).

Here, and in subsequent sections, some rather involved calculations are required, and

in some places, various expansions have to be taken to fifth order. To avoid breaking

the flow of the main argument, we postpone several detailed proofs, including for the

following lemma, until Section 2.4.
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Lemma 2.17. Fix λ− < λ+ ∈ R. Given p ∈ (0, 1), let λ = λ(N, p) = N1/3(Np − 1).

Then

P(G(N, p) acyclic) = (1 + o(1))g(λ)e3/4√
2πN−1/6, (2.22)

uniformly for λ ∈ [λ−, λ+] as N → ∞.

Motivated by the definition of stack forests, for each 0 ≤ r ≤ N , let AN,r ⊆ FN denote

the set of forests where the vertices 1, . . . , r are separated. Furthermore, given a forest

F ∈ AN,r, let kr(F ) be the sum of the sizes of the components containing vertices

1, . . . , r. We also define

AN,r,k := {F ∈ AN,r, kr(F ) = k}, (2.23)

the set of forests where 1, . . . , r are separated, and their stack forest has size k.

Definition 2.18. Given p ∈ (0, 1) and N, N ′, r, k ∈ N satisfying N ′ ≤ N , and r ≤ k ≤

N , we will use the following rescalings:

λ = λ(N, p) := N1/3(Np − 1), a = a(N, k) := k

N2/3 ,

b = b(N, r) := r

N1/3 , s = s(N, N ′) := N − N ′

N2/3 . (2.24)

For much of this and the following sections, it will be necessary to make estimates

uniformly across several variables. For constants T < ∞, and λ− < λ+, and 0 < ϵ <

K < ∞, we let

ΨN (λ−, λ+, ϵ, K, T ) :=
{

(N ′, p, r, k) ∈ N × (0, 1) × N × N : s(N, N ′) ∈ [0, T ],

λ(N, p) ∈ [λ−, λ+], b(N, r) ∈ [ϵ, K], k ∈ [r, KN2/3]
}

.

We also define the following, which includes a broader range of r,

Ψ̄N (λ−, λ+, K, T ) :=
{

(N ′, p, r, k) ∈ N × (0, 1) × N × N : s(N, N ′) ∈ [0, T ],

λ(N, p) ∈ [λ−, λ+], r ∈ [1, KN1/3], k ∈ [r, KN2/3]
}

.
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In addition, we define the projections of both of these sets into their first three entries

ΨN
0 (λ−, λ+, ϵ, K, T ) :=

{
(N ′, p, r) : s(N, N ′) ∈ [0, T ], λ(N, p) ∈ [λ−, λ+], b(N, r) ∈ [ϵ, K]

}
.

Ψ̄N
0 (λ−, λ+, K, T ) :=

{
(N ′, p, r) : s(N, N ′) ∈ [0, T ], λ(N, p) ∈ [λ−, λ+], r ∈ [1, KN1/3]

}
.

The following lemma gives uniform asymptotics for the probability that G(N ′, p) lies in

AN ′,r,k. The proof is postponed until Section 2.4.2.

Lemma 2.19. Fix constants λ−, λ+, ϵ, K, T as in Definition 2.18. Then,

P
(
G(N ′, p) ∈ AN ′,r,k

)
= (1 + o(1))e3/4g(λ − s − a)N−5/6ba−3/2 (2.25)

× exp
(
−b(λ − s) − b2

2a + (λ−s−a)3−(λ−s)3

6

)
,

uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T ), as N → ∞.

2.2.3 Expected size of the stack forest

We now condition on [r] being separated in Ḡ(N ′, p), and obtain an estimate on the

expected size of the corresponding stack forest. Recall from (2.24) the definitions of

b = b(N, r) and s = s(N, N ′), the rescaled stack size, and the graph vertex deficit count,

respectively.

Lemma 2.20. Fix constants λ−, λ+, K, T as in Definition 2.18. Then,

N−2/3E
[
kr(Ḡ(N ′, p))

∣∣ Ḡ(N ′, p) ∈ AN ′,r

]
− α(b, λ − s) → 0, (2.26)

uniformly on (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+, K, T ), as N → ∞.

Proof. We can rewrite the expectation in (2.26) in terms of the unconditioned random

graphs G(N ′, p) as follows.

E
[
kr(Ḡ(N ′, p))

∣∣ Ḡ(N ′, p) ∈ AN ′,r

]
=
∑N ′

k=r kP
(
Ḡ(N ′, p) ∈ AN ′,r,k

)
∑N ′

k=r P
(
Ḡ(N ′, p) ∈ AN ′,r,k

)
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=
∑N ′

k=r kP
(
G(N ′, p) ∈ AN ′,r,k

)∑N ′
k=r P

(
G(N ′, p) ∈ AN ′,r,k

) . (2.27)

We shall see that both of the sums in (2.27) are dominated by contributions from

k = Θ(N2/3).

In order to use Lemma 2.19, we assume ϵ ∈ (0, K) is given. We will first show that

(2.26) holds uniformly on ΨN (λ−, λ+, ϵ, K, T ). Then, at the end, we will take ϵ → 0.

We also select M > K, which we will take to ∞ shortly.

We write h(a, b) := a−3/2g(λ − s − a) exp
(

(λ−s−a)3−(λ−s)3

6

)
exp(−b2/2a). Since g is

bounded, h(a, b) → 0 as a → 0 (indeed uniformly on b ∈ [ϵ, K], λ ∈ R, s ∈ R≥0), so∫M
0 h(a, b)da < ∞ for all M < ∞. We observe that for all λ ∈ R and a > 0, we have

exp
(

(λ−s−a)3−(λ−s)3

6

)
≤ 1. It also holds that

inf
a∈[0,K]
λ,s∈R

∂

∂a

[
exp

(
(λ−s−a)3−(λ−s)3

6

)]
= inf

a∈[0,K]
λ,s∈R

[
− (λ−s−a)2

2

]
exp

(
(λ−s−a)3−(λ−s)3

6

)
> −∞.

The function h therefore has the following uniform continuity property. For any compact

set A ⊆ R+ × R+ and for all ϵ > 0, there exists δ = δ(ϵ, A) > 0 such that whenever

(a, b), (a′, b′) ∈ A and |a − a′| ≤ δ and |b − b′| ≤ δ then

∣∣h(a, b) − h(a′, b′)
∣∣ ≤ ϵ, ∀λ ∈ R, ∀s ∈ R≥0.

Furthermore, h is bounded away from zero on A, uniformly in λ and s. We may now

use Lemma 2.19 to approximate every summand in (2.27), uniformly over the required

range. (Recall from (2.24) that a is a linear function of k.) So

⌈MN2/3⌉∑
k=r

P
(
G(N ′, p) ∈ AN ′,r,k

)
= (1 + o(1))bN−5/6 exp

(
−b(λ − s) − (λ−s)3

6 + 3
4

)

×N2/3
∫ M

0
a−3/2g(λ − s − a) exp

(
(λ−s−a)3

6

)
exp

(
− b2

2a

)
da,

⌈MN2/3⌉∑
k=r

kP
(
G(N ′, p) ∈ AN ′,r,k

)
= (1 + o(1))bN−5/6 exp

(
−b(λ − s) − (λ−s)3

6 + 3
4

)
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× N4/3
∫ M

0
a−1/2g(λ − s − a) exp

(
(λ−s−a)3

6

)
exp

(
− b2

2a

)
da, (2.28)

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ϵ, K, T ), as N → ∞.

Observe, by comparison with the definition of α in (2.5), that

lim
M→∞

N−2/3
∑⌈MN2/3⌉

k=r kP
(
G(N ′, p) ∈ AN ′,r,k

)
∑⌈MN2/3⌉

k=r P
(
G(N ′, p) ∈ AN ′,r,k

) = (1 + o(1))α(b, λ − s),

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ϵ, K, T ).

Therefore, to apply (2.27) to verify (2.26), we must check that the contribution to the

expectation from the event that the size of the stack forest is larger than MN2/3 vanishes

as M → ∞. From (2.28), the contribution to the numerator of (2.27) from summands

for which k ∈ [r, ⌈MN2/3⌉] has order N−5/6×N4/3 = N1/2. So to verify (2.26) uniformly

on ΨN
0 (λ−, λ+, ϵ, K, T ), it will suffice to check that the following statement holds:

lim
M→∞

lim sup
N→∞

sup
(N ′,p,r)∈ΨN

0 (λ−,λ+,ϵ,K,T )
N−1/2

N ′∑
k=⌊MN2/3⌋

kP
(
G(N ′, p) ∈ AN ′,r,k

)
= 0.

(2.29)

The stack forest is not too large

To show (2.29), we will show that the sequence (kP
(
G(N ′, p) ∈ AN ′,r,k

)
)k≥r is eventually

bounded by a geometric series. From the definition of F (N, p) in (2.19), we have that

P(G(N, p) ∈ AN,r,k) = (1 − p)(
N
2 )−(N−k

2 )
(

N − r

k − r

)(
p

1 − p

)k−r

rkk−r−1F (N − k, p).

(2.30)

An explanation of where each term in this expression comes from is given in the proof

of Lemma 2.19 in Section 2.4.2. We will use this to control the ratio of the probabilities

P
(
G(N ′, p) ∈ AN ′,r,k

)
in the following lemma.
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Lemma 2.21. Given the same constants as in Lemma 2.20, there exist constants

M < ∞ and γ > 0 such that

(k + 1)P
(
G(N ′, p) ∈ AN ′,r,k+1

)
kP
(
G(N ′, p) ∈ AN ′,r,k

) ≤ 1 − γN−2/3, (2.31)

for large enough N , whenever (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+, K, T ) and k ∈ [MN2/3, N ′ − 1].

This lemma is proved in Section 2.4.3. But then, we can bound (2.29) via a geometric

series as

N−1/2
N ′∑

k=MN2/3

kP
(
G(N ′, p) ∈ AN ′,r,k

)
≤ N−1/2

⌈MN2/3⌉P
(
G(N ′, p) ∈ AN ′,r,⌈MN2/3⌉

)
1 − (1 − γN−2/3)

.

By Lemma 2.19, this RHS is

(1 + o(1))N−1/2 1
γ

N2/3 · MN2/3e3/4g(λ − s − M)N−5/6bM−3/2

× exp
(
−b(λ − s) − b2

2M + (λ−s−M)3−(λ−s)3

6

)
= (1 + o(1))M−1/2e−b2/2M exp

(
(λ−s−M)3−(λ−s)3

6

)
× g(λ − s − M)

× e3/4

γ b exp
(
−b(λ − s) − (λ−s)3

6

)
.

Recall that g is uniformly bounded above and exp
(

(λ−s−M)3−(λ−s)3

6

)
≤ 1. Then observe

that M−1/2eb2/2M → 0 as M → ∞. Therefore

lim
M→∞

lim sup
N→∞

sup
(N ′,p,r)∈ΨN

0 (λ−,λ+,ϵ,K,T )
N−1/2

N ′∑
k=⌊MN2/3⌋

kP
(
G(N ′, p) ∈ AN ′,r,k

)
= 0.

So we have finished the proof of (2.29), and thus we have shown that (2.26) holds

uniformly on ΨN
0 (λ−, λ+, ϵ, K, T ).

Small stacks

To finish this proof of Lemma 2.20, it remains to extend the convergence to uniformity

on r ∈ [1, ⌈Kn1/3⌉], rather than on [⌊ϵN1/3⌋, ⌈KN1/3⌉].
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Recall from Lemma 2.5 that α(b, λ) → 0 as b ↓ 0 uniformly on compact intervals in λ.

In particular

lim
ϵ→0

lim sup
N→∞

sup
λ∈[λ−,λ+]

s∈[0,T ], r∈[1,ϵN1/3]

α
(

r
N1/3 , λ − s

)
= 0. (2.32)

Before Definition 2.18, we defined kr(F ) for a forest F , but we can extend the definition

to a general graph G with vertex set [N ]. If |C(i)| is the size of the component containing

vertex i ∈ [N ], then let kr(G) := |C(1)| + . . . + |C(r)|, so some components may be

counted at least twice. In particular, kr(G) is an increasing function of graphs. However,

for any r, the set AN,r is a decreasing family of graphs. Therefore

E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]

≤ E
[
kr(G(N ′, p))

]
≤ rE

[
|CN ′,p(1)|

]
, (2.33)

where |CN ′,p(1)| is the size of the component containing vertex 1 in G(N ′, p). From

Proposition 2.11, for the range of N ′, p under consideration,

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

λ(N,p)∈[λ−,λ+]

N−1/3E
[
|CN ′,p(1)|

]
≤ Θλ+

< ∞. (2.34)

We now take r ≤ ϵN1/3 in (2.33), and apply (2.34) to obtain

lim
ϵ→0

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

λ(N,p)∈[λ−,λ+]
r∈[1,ϵN1/3]

N−2/3E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]

≤ lim
ϵ→0

ϵΘλ+ = 0.

So, with (2.32), this gives

lim
ϵ→0

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

λ(N,p)∈[λ−,λ+]
r∈[1,ϵN1/3]

∣∣∣N−2/3E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]

− α
(

r
N1/3 , λ − s

)∣∣∣ = 0.

(2.35)

We already know that (2.26) holds uniformly on ΨN (λ−, λ+, ϵ, K, T ). So, combining

with (2.35) and taking ϵ small shows that (2.26) does hold uniformly on (N ′, p, r) ∈

Ψ̄N
0 (λ−, λ+, K, T ), as required for the full statement of Lemma 2.20.
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2.2.4 Proof of Proposition 2.12

Recall that AN,r ⊆ FN is the set of forests on [N ] where vertices 1, . . . , r are separated.

Let F be a uniform choice from AN,r. Then

P
(
F ∈ AN,r+1

∣∣F ∈ AN,r,k

)
= N − k

N − r
,

as the labels of the k − r other vertices in the stack forest containing vertices [r] are

uniformly chosen from {r + 1, . . . , N}. Furthermore, AN,r+1 ⊆ AN,r, and so

P
(
Ḡ(N, p) ∈ AN,r+1

)
P
(
Ḡ(N, p) ∈ AN,r

) = P
(
Ḡ(N, p) ∈ AN,r+1

∣∣ Ḡ(N, p) ∈ AN,r

)

=
N∑

k=r

P
(
Ḡ(N, p) ∈ AN,r+1

∣∣ Ḡ(N, p) ∈ AN,r,k

)
× P

(
Ḡ(N, p) ∈ AN,r,k

∣∣ Ḡ(N, p) ∈ AN,r

)
=

N − E
[
kr(Ḡ(N, p))

∣∣ Ḡ(N, p) ∈ AN,r

]
N − r

.

It follows that uniformly on (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+, K, T ), as in Lemma 2.20, as N → ∞,

N1/3

1 −
P
(
Ḡ(N ′, p) ∈ AN ′,r+1

)
P
(
Ḡ(N ′, p) ∈ AN ′,r

)
− α

(
r

N1/3 , λ − s
)

→ 0. (2.36)

Now we can return to the increments of ZN,λ, the exploration process of Ḡ(N, 1+λN−1/3

N ).

Recall Lemma 2.15, which asserts that

P
(
ZN,λ

m+1 − ZN,λ
m = ℓ − 1

∣∣ZN,λ
m = r

)
∝ P

(
BN−m−r,p = ℓ

)

×P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r+ℓ−1

)
, ℓ ≥ 0,

where BN−m−r,p ∼ Bin(N − m − r, p). So we define

qN,m,r
ℓ := P

(
BN−m−r,p = ℓ

)
×

P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r+ℓ−1

)
P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r−1

) . (2.37)
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Therefore we also have P
(
ZN,λ

m+1 − ZN,λ
m = ℓ − 1

∣∣ZN,λ
m = r

)
∝ qN,m,r

ℓ . From (2.36), the

quotient in (2.37), which we will think of as a weight, should be approximately

(
1 − α

(
r

N1/3 , λ − m
N2/3

)
N−1/3

)ℓ
,

and so we will be able to approximate ∑ qN,m,r
ℓ by the probability generating function

of BN−m−r,p. Indeed, this approximation only breaks down when r + ℓ − 1 ≥ KN1/3,

that is, outside the range of (2.36). From now on, we assume K = 2ρ. Therefore, for

any δ > 0, for large enough N , we have, for all m ∈ [0, TN2/3], r ∈ [1, ρN1/3], and

ℓ ≤ N1/4.

P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r+ℓ−1

)
P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r−1

) ≤
ℓ−1∏
i=0

(
1 −

(
α
(

r+i−1
N1/3 , λ − m−1

N2/3

)
− δ

)
N−1/3

)
.

By uniform continuity of α, since the range of i in this product is asymptotically

negligible relative to N1/3, we can further say that for large enough N ,

P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r+ℓ−1

)
P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r−1

) ≤
(
1 −

(
α
(

r
N1/3 , λ − m

N2/3

)
− δ

)
N−1/3

)ℓ
.

An identical argument gives

P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r+ℓ−1

)
P
(
Ḡ(N − m − 1, p) ∈ AN−m−1,r−1

) ≥
(
1 −

(
α
(

r
N1/3 , λ − m

N2/3

)
+ δ

)
N−1/3

)ℓ
,

under the same conditions. From now on, we write αN
m,r = α

(
r

N1/3 , λ − m
N2/3

)
for

brevity.

Keeping δ > 0 fixed, we now address the sums ∑∞
ℓ=0 qN,m,r

ℓ and ∑∞
ℓ=0(ℓ − 1)qN,m,r

ℓ .

(Note first that both qN,m,r
0 and qN,m,r

1 → 1/e, so these sums are uniformly bounded

below.) For large enough N , we have, again for all m ∈ [0, TN2/3], r ∈ [1, ρN1/3],

N−m−r∑
ℓ=0

qN,m,r
ℓ ≤

⌈N1/4⌉∑
ℓ=0

P
(
BN−m−r,p = ℓ

)(
1 − (αN

m,r − δ)N−1/3
)ℓ

+ P
(
BN−m−r,p ≥ N1/4

)
≤
[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r

+ P
(
BN−m−r,p ≥ N1/4

)
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Now, note that

[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r

=
[
1 − (αN

m,r − δ)N−4/3 + O(N−5/3)
]N−m−r

,

from which we find that

N1/3
[
1 −

[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r

]
+
(
αN

m,r − δ
)

→ 0, (2.38)

uniformly as N → ∞. The probability P
(
BN−m−r,p ≥ N1/4

)
decays exponentially with

some positive power of N , so we have shown that for large enough N ,

N−m−r∑
ℓ=0

qN,m,r
ℓ ≤ 1 −

(
αN

m,r − 2δ
)
N−1/3. (2.39)

Under the same conditions,

N−m−r∑
ℓ=0

qN,m,r
ℓ ≥ 1 −

(
αN

m,r + 2δ
)
N−1/3.

Now we consider the sum ∑
ℓqN,m,r

ℓ .

N−m−r∑
ℓ=0

ℓqN,m,r
ℓ ≤

N−m−r∑
ℓ=0

ℓP
(
BN−m−r,p = ℓ

)(
1 − (αN

m,r − δ)N−1/3
)ℓ

+ NP
(
BN−m−r,p ≥ N1/4

)
≤ (N − m − r)p

(
1 − (αN

m,r − δ)N−1/3
)

×
[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r−1

(2.40)

+ NP
(
BN−m−r,p ≥ N1/4

)
.

We can treat the term
[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r−1

as in (2.38). We

also have

(N − m − r)p
(
1 − (αN

m,r − δ)N−1/3
)

= 1 +
(
λ − m

N2/3 − (αN
m,r − δ)

)
N−1/3 + O(N−2/3).

(2.41)
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So, in a similar fashion to (2.39), we establish

N−m−r∑
ℓ=0

ℓqN,m,r
ℓ ≤ 1 +

(
λ − 2αN

m,r + 3δ − m
N2/3

)
N−1/3, (2.42)

and
N−m−r∑

ℓ=0
ℓqN,m,r

ℓ ≥ 1 +
(
λ − 2αN

m,r − 3δ − m
N2/3

)
N−1/3.

Therefore, (where each successive statement holds for large enough N)

E
[
ZN,λ

m+1 − ZN,λ
m

∣∣ZN,λ
m = r

]
=
∑N−m−r

ℓ=0 ℓqN,m,r
ℓ −

∑N−m−r
ℓ=0 qN,m,r

ℓ∑N−m−r
ℓ=0 qN,m,r

ℓ

≤

(
λ − 2αN

m,r + 3δ − m
N2/3

)
N−1/3 +

(
αN

m,r + 2δ
)
N−1/3

1 +
(
λ − αN

m,r − 2δ − m
N2/3

)
N−1/3

≤
(
λ − αN

m,r − m
N2/3 + 6δ

)
N−1/3.

Similarly

E
[
ZN,λ

m+1 − ZN,λ
m

∣∣ZN,λ
m = r

]
≥
(
λ − αN

m,r − m
N2/3 − 6δ

)
N−1/3,

and so since δ > 0 was arbitrary, (2.11) follows, completing the proof of Proposition

2.12.

2.2.5 Proof of Proposition 2.13

Variance of increments

We can show (2.12) using the estimates from Section 2.2.4. Recall the definition of

qN,m,r
ℓ from (2.37). As in (2.40), we have

N−m−r∑
ℓ=0

ℓ(ℓ − 1)qN,m,r
ℓ ≤ (N − m − r)(N − m − r − 1)p2

(
1 − (αN

m,r − δ)N−1/3
)2

×
[
(1 − p) + p

(
1 − (αN

m,r − δ)N−1/3
)]N−m−r−2

+ NP
(
BN−m−r,p ≥ N1/4

)
.
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Again, we use (2.38) and (2.41). Similarly to (2.42), we have

1+
(
2λ − 3αN

m,r − 4δ − 2m
N2/3

)
N−1/3 ≤

N−m−r∑
ℓ=0

ℓ(ℓ−1)qN,m,r
ℓ ≤ 1+

(
2λ − 3αN

m,r + 4δ − 2m
N2/3

)
N−1/3.

In particular, we obtain

N−m−r∑
ℓ=0

(ℓ − 1)2qN,m,r
ℓ =

N−m−r∑
ℓ=0

ℓ(ℓ − 1)qN,m,r
ℓ −

N−m−r∑
ℓ=0

ℓqN,m,r
ℓ +

N−m−r∑
ℓ=0

qN,m,r
ℓ → 1,

uniformly, which is exactly (2.12).

Jumps in the limit

For any m ∈ [N ],

P
(
|ZN,λ

m+1 − ZN,λ
m | > δN1/3

)
≤ P

(
∃v ∈ [N ], degḠ(N,p)(v) > δN1/3

)
Lemma 2.10

≤ P
(
∃v ∈ [N ], degG(N,p)(v) > δN1/3

)
≤ NP

(
degG(N,p)(1) > δN1/3

)
.

But degG(N,p)(1) ∼ Bin(N − 1, p), and so for any δ > 0, this final term vanishes

exponentially fast. So (2.13) follows.

Speed at the boundary

Finally, we check that the discrete processes (ZN,λ) do not get stuck at zero. Conditional

on ZN,λ
m = 0, ZN,λ

m+1, is the number of neighbours of vm+1. Heuristically, we note that if

this number of neighbours is either zero or one, there is no possibility for vm+1 to be

contained in a cycle. By the same argument as led to Lemma 2.15, we have

P
(
ZN,λ

m+1 = 1
∣∣ZN,λ

m = 0
)

P
(
ZN,λ

m+1 = 0
∣∣ZN,λ

m = 0
) =

P
(
BN−m−1,p = 1

)
P(BN−m−1,p = 0) = (N − m − 1)p

1 − p
.

Therefore

lim inf
N→∞

inf
m∈[0,T N2/3]

P
(
ZN,λ

m+1 = 1
∣∣ZN,λ

m = 0
)

P
(
ZN,λ

m+1 = 0
∣∣ZN,λ

m = 0
) ≥ 1,
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and so

lim inf
N→∞

inf
m∈[0,T N2/3]

E
[[

ZN,λ
m+1

]2 ∣∣ZN,λ
m = 0

]
≥ 1

2 ,

as required for (2.14).

This completes the proof of Proposition 2.13.

2.2.6 Regularity of α and proof of Lemma 2.5

In this section, we prove various regularity properties of the function g defined in (2.4),

and from this the technical properties we require about α. In particular, the content of

Lemma 2.5 is a subset of what follows.

Properties of g

Recall from (2.4) the definition of g

g(x) := 1
π

∫ ∞

0
exp(−4

3 t3/2) cos(xt + 4
3 t3/2)dt.

We now prove a lemma which justifies all the regularity properties of g which are

required elsewhere.

Lemma 2.22. The function g defined in (2.4) is smooth and positive. Furthermore,

it is bounded, uniformly continuous, and satisfies
∫∞

x=−∞ g(x)dx < ∞ and g(x) → 0 as

x → ±∞.

Proof. The key fact, which emerges from Britikov’s proof [16] as introduced in Section

2.1.4, is that g is, after stretching by a factor (2/3)2/3, the density of the canonical

stable distribution with self-similarity exponent α = 3/2 and skewness β = −1. See for

example Zolotarev’s book [73] for a more general introduction to such distributions and

their properties. In particular, g is positive and smooth. Then g is certainly bounded as

|g(x)| ≤ 1
π

∫ ∞

0
exp

(
−4

3 t3/2
)
dt < ∞.
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It is clear from the Mean Value Theorem that | cos(x) − cos(y)| ≤ |x − y|. Uniform

continuity of g then follows as

|g(x) − g(y)| ≤ |x − y|
π

∫ ∞

0
t exp

(
−4

3 t3/2
)
dt,

and this integral is finite. Since g is a density, it has finite integral, and then the claim

that g(x) → 0 as x → ±∞ follows from uniform continuity.

α is well-defined and monotone

For k ∈ N, we define

Jk(b, λ) :=
∫ ∞

0
a−k/2g(λ − a) exp

(
(λ−a)3

6

)
exp

(
− b2

2a

)
da, b > 0, λ ∈ R. (2.43)

Lemma 2.23. For each k ∈ N, this function Jk is well-defined and continuous, and has

partial derivative with respect to b given by

∂

∂b
Jk(b, λ) = −bJk+2(b, λ). (2.44)

Furthermore, the function α(b, λ) := J1(b,λ)
J3(b,λ) defined in (2.5) is also well-defined, continu-

ous and differentiable with respect to b.

Proof. To show that Jk(b, λ) < ∞, we consider the integral in (2.43) separately over

the ranges a ∈ (0, 1] and a ∈ [1, ∞). We have

∫ ∞

1
a−k/2g(λ − a) exp

(
(λ−a)3

6

)
exp

(
− b2

2a

)
da < eλ3/6

∫ ∞

1
g(λ − a)da < ∞, (2.45)

and

∫ 1

0
a−k/2g(λ − a) exp

(
(λ−a)3

6

)
exp

(
− b2

2a

)
da < eλ3/6gmax

∫ 1

0
a−k/2 exp

(
− b2

2a

)
da < ∞.

(2.46)

Thus we have Jk(b, λ) < ∞.
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Since the bounds (2.45) and (2.46) hold locally uniformly in (b, λ), continuity of Jk

follows from the dominated convergence theorem.

We introduce some notation for the integrand in (2.43):

jk(a, b, λ) := a−k/2g(λ − a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
.

Fix b0 > 0, and let B ⊆ R+ be some interval containing b0. Clearly both jk(a, b, λ) and
∂
∂bjk(a, b, λ) are continuous on R+ × B ×R. Now take some b− < inf B and b+ > sup B.

Then we have

jk(a, b, λ) ≤ jk(a, b−, λ),
∣∣∣ ∂

∂bjk(a, b, λ)
∣∣∣ ≤ b+jk+2(a, b−, λ), ∀b ∈ B, a > 0, λ ∈ R.

We have already shown that
∫∞

0 jk(a, b−, λ)da < ∞ and
∫∞

0 jk+2(a, b−, λ)da < ∞. So

we may differentiate (2.43) inside the integral at b = b0 (and b0 was arbitrary), to obtain,

for all k ≥ 1,
∂

∂b
Jk(b, λ) = −bJk+2(b, λ). (2.47)

Well-definedness and continuity of α(b, λ) := J1(b,λ)
J3(b,λ) follow immediately, since J3(b, λ) > 0

for all b > 0, λ ∈ R, and furthermore α(b, λ) is differentiable in its first argument as

required, with
∂

∂b
α(b, λ) = bJ1(b, λ)J5(b, λ)

J3(b, λ)2 − b, (2.48)

through two applications of (2.47).

Proposition 2.24. α(b, λ) is increasing as a function of b.

Proof. Heuristically, we can view (2.5) as the expectation of a with respect to the measure

with density a−3/2 exp
(

(λ−a)3

6

)
g(λ − a), weighted by a factor exp(− b2

2a). Increasing b

reweights in favour of larger values of a, so α(b, λ) is increasing in b. We make this

formal with the following lemma.
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Lemma 2.25. Let f, h be functions R+ → R+ such that h is strictly increasing, and

the integrals ∫ ∞

0
af(a)h(a)da,

∫ ∞

0
f(a)da, (2.49)

exist and are finite. Then

∫∞
0 af(a)h(a)da∫∞
0 f(a)h(a)da

>

∫∞
0 af(a)da∫∞
0 f(a)da

. (2.50)

Proof. Note if the integrals in (2.49) exist, then so do the remaining two integrals that

appear in (2.50). First, it is clear that for any c > 0

∫ ∞

a=c

∫ c

b=0
f(a)f(b)h(a)dbda >

∫ ∞

a=c

∫ c

b=0
f(a)f(b)h(b)dbda,

since h(a) > h(b) over this range. But clearly also we have

∫ ∞

a=c

∫ ∞

b=c
f(a)f(b)h(a) db da =

∫ ∞

a=c

∫ ∞

b=c
f(a)f(b)h(b) db da.

Adding these two relations, and integrating over c ∈ R+, we obtain

∫ ∞

c=0

∫ ∞

a=c

∫ ∞

b=0
f(a)f(b)h(a) db da dc >

∫ ∞

c=0

∫ ∞

a=c

∫ ∞

b=0
f(a)f(b)h(b) db da dc∫ ∞

a=0

∫ ∞

b=0

∫ a

c=0
f(a)f(b)h(a) dc db da >

∫ ∞

a=0

∫ ∞

b=0

∫ a

c=0
f(a)f(b)h(b) dc db da(∫ ∞

a=0
af(a)h(a) da

)(∫ ∞

b=0
f(b) db

)
>

(∫ ∞

a=0
af(a) da

)(∫ ∞

b=0
f(b)h(b) db

)
,

exactly as required.

To apply the lemma to α, fix λ ∈ R and let b′ > b, and set

f(a) := a−3/2g(λ − a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
,

and

h(a) := exp
(
− b′2−b2

2a

)
,
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which is strictly increasing. We conclude from the lemma that

α(b′, λ) > α(b, λ), b′ > b.

This completes the proof of Proposition 2.24.

Lipschitz property of α

The following proposition establishes the behaviour of α(b, λ) as b ↓ 0 in the sense

required to complete the proof of Lemma 2.20. It also establishes a Lipschitz condition

for α, required in Proposition 2.6 for the well-posedness of the reflected SDE (2.6).

Proposition 2.26. Given −∞ < λ− < λ+ < ∞, we have

lim
b↓0

sup
λ∈[λ−,λ+]

α(b, λ) = 0. (2.51)

Furthermore, given ρ < ∞, there exists a constant C < ∞ such that α satisfies the

Lipschitz condition

∣∣α(b, λ) − α(b′, λ)
∣∣ ≤ C|b − b′|, b, b′ ∈ (0, ρ], λ ∈ [λ−, λ+]. (2.52)

Proof. To show (2.52), it suffices to prove the following:

sup
b∈(0,ρ],λ∈[λ−,λ+]

∣∣∣∣ ∂

∂b
α(b, λ)

∣∣∣∣ < ∞. (2.53)

The steps we take to prove (2.52) will also allow us to read off (2.51). Recall the

expression (2.48) from the proof of Lemma 2.23:

∂

∂b
α(b, λ) = bJ1(b, λ)J5(b, λ)

J3(b, λ)2 − b. (2.48)

From Lemma 2.23, we know that ∂
∂bα(b, λ) is continuous, and so to verify (2.53),

it remains to consider the limit as b ↓ 0. We examine the behaviour of each of

J1(b, λ), J3(b, λ), J5(b, λ) in this limit.
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First, we consider J1. We define

γ1(λ) := eλ3/6
∫ ∞

0
a−1/2g(λ − a)da,

which is seen to be finite by a similar decomposition to (2.45) and (2.46). Then

γ1(λ) − J1(b, λ) ≤ gmax

∫ ∞

0
a−1/2

[
eλ3/6 − exp

(
(λ−a)3

6

)
exp

(
− b2

2a

)]
da

≤ eλ3/6gmax

∫ ∞

0
a−1/2

[
1 − exp

(
− b2

2a

)]
da,

and so by monotone convergence we have as b ↓ 0,

sup
λ∈(−∞,λ+]

|J1(b, λ) − γ1(λ)| → 0. (2.54)

Substituting u = b2

2a into (2.43) gives

J3(b, λ) =
√

2
b

∫ ∞

0
u−1/2g

(
λ − b2

2u

)
exp

(
(λ− b2

2u
)3

6

)
exp(−u)du.

So we define

γ3(λ) :=
√

2g(λ)eλ3/6
∫ ∞

0
u−1/2 exp(−u)du,

and then by dominated convergence and uniform continuity of g,

lim
b↓0

sup
λ∈(−∞,λ+]

|bJ3(b, λ) − γ3(λ)| = 0. (2.55)

A very similar argument can be deployed to obtain

lim
b↓0

sup
λ∈(−∞,λ+]

∣∣∣b3J5(b, λ) − γ5(λ)
∣∣∣ = 0,

where

γ5(λ) := 2
√

2g(λ)eλ3/6
∫ ∞

0
u1/2 exp(−u)du.
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So we can return to (2.48), which we rewrite as

∂

∂b
α(b, λ) = J1(b, λ) · b3J5(b, λ)

(bJ3(b, λ))2 − b.

We now take the limit b ↓ 0, for λ ∈ [λ−, λ+]. The denominator is uniformly bounded

away from zero for λ ∈ [λ−, λ+]. So we obtain

lim
b↓0

sup
λ∈[λ−,λ+]

∣∣∣∣ ∂

∂b
α(b, λ) − γ1(λ)γ5(λ)

γ3(λ)2

∣∣∣∣ = 0. (2.56)

Now, γ3, γ5 are clearly continuous, and γ1 is also continuous by the same argument as

given for continuity of Jk in the proof of Lemma 2.23. Furthermore, γ3 is positive, and

so we have

max
λ∈[λ−,λ+]

γ1(λ) < ∞, min
λ∈[λ−,λ+]

γ3(λ) > 0.

Taken with (2.55), the latter shows that

lim
b↓0

inf
λ∈[λ−,λ+]

J3(b, λ) = ∞.

Therefore, since α(b, λ) = J1(b,λ)
J3(b,λ) , using (2.54) as well, we obtain precisely the first

required statement (2.51).

For similar reasons, we have

max
λ∈[λ−,λ+]

γ1(λ)γ5(λ)
γ3(λ)2 < ∞. (2.57)

Since ∂
∂bα(b, λ) is continuous on (0, ρ] × [λ−, λ+], from (2.56) and (2.57), it’s clear that

sup
b∈(0,ρ],λ∈[λ−,λ+]

∣∣∣∣ ∂

∂b
α(b, λ)

∣∣∣∣ < ∞,

from which (2.52) follows. This completes the proof of Proposition 2.26.
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2.2.7 Existence of Zλ and proof of Theorem 2.8

First we prove Proposition 2.6, which asserts that Zλ is well-defined.

THEOREM 2.27. [62, §IX 2.14] Let σ(s, x) and b(s, x) be functions R+ × R+ → R,

and W a Brownian motion. For z0 ≥ 0, we call a solution to the SDE with reflection

ez0(σ, b) a pair (Z, K) of processes such that

1. the process Z is continuous, non-negative, FW -adapted, and

Z(t) = z0 +
∫ t

0
σ(s, Z(s))dW (s) +

∫ t

0
b(s, Z(s))ds + K(t), (2.58)

2. the process K is continuous, non-decreasing, vanishing at zero, FW -adapted, and

∫ ∞

0
Z(s)dK(s) = 0. (2.59)

If σ and b are bounded and satisfy the global Lipschitz condition

|σ(s, x) − σ(s, y)| + |b(s, x) − b(s, y)| ≤ C|x − y|,

for every s, x, y ∈ (0, ∞) and some constant C, then there exists a solution to ez0(σ, b),

and furthermore this solution is unique.

Proof of Proposition 2.6

We now return to the existence of Zλ as in (2.6), for fixed λ ∈ R. In this setting

σ(s, x) ≡ 1, but

b(s, x) := λ − s − α(x, λ − s), (2.60)

is neither bounded below nor satisfies the global Lipschitz property. However, by

Proposition 2.26, for any R > 0, we can define bR(s, x) such that bR(s, x) is bounded

and globally Lipschitz in x; and bR(s, x) = b(s, x) whenever (s, x) ∈ [0, R] × [0, R]. Then

Theorem 2.27 asserts that there is a unique pair of processes (Zλ,R, Kλ,R) corresponding

to this drift, where Zλ,R(0) = 0.
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Let τλ,R be the time at which Zλ,R first hits R. Take R′ ≥ R. Then, it is clear that

Zλ,R is equal to Zλ,R′ up to time R ∧ τλ,R almost surely. Also, since b(s, x) is bounded

above by λ, it follows that τλ,R → ∞ as R → ∞ almost surely. Therefore, we may

define

Zλ(t) = lim
R→∞

Zλ,R(t),

for almost all paths of W , and Zλ. It is immediate that Zλ satisfies (2.6). Furthermore,

any solution (Zλ, Kλ) to (2.6) must coincide with (Zλ,R, Kλ,R) up to τλ,R, and so

uniqueness of (Zλ, Kλ) follows as well, as required for Proposition 2.6.

Convergence of non-negative Markov processes

A general framework for showing convergence of Markov processes to the solutions

of SDEs was introduced by Stroock and Varadhan in the 60s (see, for example, [67]).

The convergence of Markov processes to reflected diffusions is treated in [66] in high

generality, allowing for general boundaries in Rd, and inhomogeneous stickiness at the

boundaries.

We summarise the conditions and statement of Theorem 6.3 from [66] in a relevant

special case:

THEOREM 2.28. Suppose a family of non-negative-real-valued Markov processes

(ZN
m )m≥0 is given, and a pair of functions σ(t, x) and b(t, x) satisfying the conditions of

Theorem 2.27. Now, fix T > 0, and suppose that ZN
0 = 0, and the following hold

N1/3E
[
ZN

tN2/3+1 − ZN
tN2/3

∣∣ZN
tN2/3 = xN1/3

]
→ b(t, x),

E
[[

ZN
tN2/3+1 − ZN

tN2/3

]2 ∣∣ZN
tN2/3 = xN1/3

]
→ σ(t, x)2,

N2/3P
(
ZN

tN2/3+1 − ZN
tN2/3 > δ

∣∣ZN
tN2/3 = xN1/3

)
→ 0,
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as N → ∞, for any δ > 0, uniformly for t ∈ [0, T ] and x in any compact interval in

(0, ∞). Finally assume that for some ϵ > 0,

lim inf
N→∞

inf
x∈N−1/3Z∩[0,ϵ]

t∈[0,T ]

E
[[

ZN
tN2/3+1 − ZN

tN2/3

]2 ∣∣ZN
tN2/3 = xN1/3

]
> 0. (2.61)

Then, defining

Z̃N (t) := N−1/3ZN
⌊tN2/3⌋, t ∈ [0, T ], (2.62)

we have Z̃N d→ Z, uniformly on [0, T ], where Z is the unique solution to the reflected

SDE e0(σ, b), as defined in Theorem 2.27.

Note. The condition (2.61) is required to ensure instantaneous reflection at the bound-

ary, rather than absorption, or sticky reflection.

Proof of Theorem 2.8

Now let ZN,λ be the exploration process of Ḡ(N, 1+λN−1/3

N ). Again, in our setting, we

must account for the fact that the drift of Zλ is neither bounded nor globally Lipschitz.

Recall from (2.60) and the following paragraph the definitions of b(s, x) and bR(s, x).

For any R ∈ N, we can construct a Markov process (ZN,λ,R
m , m ≥ 0) whose transition

probabilities coincide with those of ZN,λ whenever m ∈ [0, TN2/3] and ZN,λ,R
m ≤ RN1/3,

and for which, by Proposition 2.12,

N1/3E
[
ZN,λ,R

tN2/3+1 − ZN,λ,R

tN2/3

∣∣ZN,λ,R

tN2/3 = xN1/3
]

→ bR(t, x),

uniformly for t ∈ [0, T ] and x in any compact interval in (0, ∞). Thus Z̃N,λ,R, defined

from ZN,λ,R as in (2.62) satisfies Z̃N,λ,R d→ Zλ,R uniformly on [0, T ].

From this, it is clear that

P
(

sup
m∈[0,T N2/3]

ZN,λ,R > RN1/3
)

→ 0,
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as R → ∞, and so as processes on [0, T ], the law of Z̃N,λ,R converges to the law of Z̃N,λ

as R → ∞, and the law of Zλ,R converges to the law of Zλ. Thus we obtain (2.8).

2.3 Excursions and component sizes

In this section, we will prove that Theorem 2.7 follows from Theorem 2.8.

As in Aldous [5], we must check that excursions of the limiting reflected SDE are

matched by excursions of the discrete exploration processes. In particular, it must

happen with vanishing probability that a zero of the limiting process appears only as the

limit of small positive local minima of the discrete processes. In addition, we must show

that there are with high probability no large discrete components which appear late

enough in the exploration that they are not represented in the limit. Several stages of

the argument will be based on a comparison of Ḡ(N, p) and the original model G(N, p),

for which some of the results are easier, or known.

2.3.1 Sizes and labels of critical components

First, we establish the notation we will use to describe the sequence of rescaled component

sizes. Fix T > 0, then:

• Let (CN,λ
1 , CN,λ

2 , . . .) be the sequence of sizes of components of Ḡ
(
N, 1+λN−1/3

N

)
,

in non-increasing order.

• Analogously, let (CN,λ,T
1 , CN,λ,T

2 , . . .) be the sequence of sizes of components of

Ḡ
(
N, 1+λN−1/3

N

)
which have non-empty intersection with {v1, . . . , v⌊T N2/3⌋}, an

initial segment of the breadth-first ordering introduced in Section 2.1.3. That is,

least one vertex has been seen by step ⌊TN2/3⌋ of the exploration process. Again,

we assume the sequence is ordered such that CN,λ,T
1 ≥ CN,λ,T

2 ≥ . . ..

Lemma 2.29. Fix λ+ ∈ R. Then

lim
γ→∞

lim sup
N→∞

sup
λ≤λ+

P
(
CN,λ

1 ≥ γN2/3
)

= 0. (2.63)
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Proof. By Lemma 2.10, it suffices to show (2.63) when CN,λ
1 is the size of the largest

component in the unconditioned random graph G
(
N, 1+λN−1/3

N

)
. Let CN,λ(v) be the

component of G(N, 1+λN−1/3

N ) containing v, a uniformly-chosen vertex in [N ]. Observe

that for λ ≤ λ+,

E
[
|CN,λ+(v)|

]
≥ E

[
|CN,λ(v)|

]
≥ γN2/3

N
· γN2/3P

(
CN,λ

1 ≥ γN2/3
)
.

Therefore, from Proposition 2.11,

lim sup
N→∞

sup
λ≤λ+

P
(
CN,λ

1 ≥ γN2/3
)

≤ Θλ+

γ2 ,

and so (2.63) follows.

The following lemma shows that critical components will with high probability include

a vertex with label O(N1/3).

Lemma 2.30. Fix ϵ > 0, and λ+ ∈ R. Then

lim
Γ→∞

lim sup
N→∞

sup
λ≤λ+

P
(
∃ cpt C in Ḡ

(
N, 1+λN−1/3

N

)
: |C| ≥ ϵN2/3 (2.64)

and C ∩
{

1, . . . , ⌊ΓN1/3⌋
}

= ∅
)

= 0.

Proof. Applying Markov’s inequality to (2.10), and summing over all vertices,

lim sup
N→∞

sup
λ≤λ+

N−2/3E
[∣∣∣{v ∈ [N ] :

∣∣∣CN,λ(v)
∣∣∣ ≥ ϵN2/3

}∣∣∣] ≤ Θλ+

ϵ
.

Therefore,

lim sup
N→∞

sup
λ≤λ+

E
[
#cpts C in Ḡ

(
N, 1+λN−1/3

N

)
s.t. |C| ≥ ϵN2/3

]
≤ Θλ+

ϵ2 .

Then, since the labelling is independent of the component sizes in Ḡ(N, p),

lim sup
N→∞

sup
λ≤λ+

E
[
#cpts C in Ḡ

(
N, 1+λN−1/3

N

)
s.t. |C| ≥ ϵN2/3

and C ∩
{

1, . . . , ⌊Γn1/3⌋
}

= ∅
]
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≤ Θλ+

ϵ2 × lim
N→∞

(N−⌊ΓN1/3⌋
⌊ϵN2/3⌋

)
( N

⌊ϵN2/3⌋
)

≤ Θλ+

ϵ2 exp(−Γϵ),

where the final deduction follows by a routine application of Stirling’s approximation.

The result follows immediately.

We now use the previous result to show that the largest components will typically

appear near the start of the exploration process. This will be important later, since if

large critical components appear arbitrarily late in the exploration process, then they

cannot be treated via convergence on compact intervals.

Lemma 2.31. Fix ϵ > 0 and λ+ ∈ R as before. Then

lim
T →∞

lim sup
N→∞

sup
λ≤λ+

P
(
∃ cpt C in Ḡ

(
N, 1+λN−1/3

N

)
: |C| ≥ ϵN2/3 (2.65)

and C ∩
{

v1, . . . , v⌊T N2/3⌋

}
= ∅

)
= 0.

Proof. Fix Γ > 0. We define the events

AN,Γ,T := {|CN (1)| + |CN (2)| + . . . + |CN (⌊ΓN1/3⌋)| > TN2/3},

BN,ϵ,Γ :=
{

∃ cpt C in Ḡ
(
N, 1+λN−1/3

N

)
: |C| ≥ ϵN2/3, C ∩

{
1, . . . , ⌊ΓN1/3⌋

}
= ∅

}
,

as in Lemma 2.30. Then, by Markov’s inequality,

P
(
AN,Γ,T holds in Ḡ

(
N, 1+λN−1/3

N

))
≤

ΓN1/3E
[
|CN,λ(1)|

]
TN2/3 ,

So by Proposition 2.11

lim sup
N→∞

sup
λ≤λ+

P
(
AN,Γ,T holds in Ḡ

(
N, 1+λN−1/3

N

))
≤ Θλ+Γ

T
. (2.66)

Whenever Ḡ(N, 1+λN−1/3

N ) contains a component of size at least ϵN2/3 which is not

exhausted during the first TN2/3 steps of the exploration process, at least one of AN,Γ,T
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and BN,ϵ,Γ must hold. So take Γ =
√

T , then let T → ∞. By (2.66) and Lemma 2.30,

the result follows.

2.3.2 Components and excursions up to time T - notation and outline

We first show that for any T < ∞ the excursion lengths in the exploration processes on

the interval [0, T ] appear correctly in the limit.

In everything that follows, we work on the probability space (Ω,F,P) whose existence is

guaranteed by the Skorohod representation theorem, where Z̃N,λ P−a.s.→ Zλ with respect

to the topology of uniform convergence on compact intervals. Recall that throughout

this section, λ ∈ R is fixed, and p = 1+λN−1/3

N , so henceforth we suppress λ from the

notation.

Let CT
1 ≥ CT

2 ≥ . . . be the lengths of excursions of Z̃λ above zero which have non-empty

intersection with [0, T ], in non-increasing order. We will prove the following convergence

result for the components seen within the first TN2/3 steps of the exploration process.

Proposition 2.32. Fix T > 0 and k ≥ 1. Then as N → ∞,

N−2/3(CN,T
1 , CN,T

2 , . . . , CN,T
k ) d→ (CT

1 , CT
2 , . . . , CT

k ). (2.67)

The proof occupies the rest of this subsection. Throughout, we write

CN,T = (CN,T
1 , . . . , CN,T

k ), and CT = (CT
1 , . . . , CT

k ).

The concern is that the reflected exploration process might regularly approach zero

without actually hitting zero, and thus starting a new component. To show that this

effect does not appear in the limit, we use the fact that the components of Ḡ(N, p)

have the structure of uniform random trees. Then we can approximate the exploration

process within a component by a Brownian excursion, and show that the probability of

zeros in the limit which do not correspond to the start or end of a component is small.
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Definition 2.33. Given two sequences a = (a1, . . . , ak), b = (b1, . . . , bk), let a↓, b↓

denote the sequences rearranged into non-increasing order. Then, we say a ≽ b or a

weakly majorises b if for every ℓ ≤ k,

ℓ∑
i=1

a↓
i ≥

ℓ∑
i=1

b↓
i .

It is easy to check that this gives a pre-order on (R ∪ {∞})k, and a partial order on

non-increasing sequences finer than the standard ordering.

We will prove Proposition 2.32 by stochastically sandwiching CT between any weak

limit of CN,T , and any weak limit of a related sequence of lengths CN,T,δ associated

with Z̃N , which will be defined shortly. This stochastic ordering will be with respect to

weak majorisation. The two directions of this sandwiching argument occupy the next

two sections. Finally, we show that for small enough δ, these outer distributions are

close in the sense of the Lévy–Prohorov metric.

2.3.3 Limits of component sizes stochastically majorise excursion lengths

We show that limit points of CN,T majorise CT , P-almost surely.

For any reference time s ∈ [0, T ], we define

α(s) := sup{t ≤ s : Z(t) = 0}, αN (s) := sup{t ≤ s : Z̃N (t) = 0},

β(s) := inf{t ∈ [s, ∞) : Z(t) = 0}, βN (s) := inf{t ∈ [s, T ] : Z̃N (t) = 0}.

It will be convenient to avoid values of s where αN and βN are non-constant, so we

define

Q̄ :=
⋃

N∈N
N−2/3Z.

We also define the event

ΨT :=
{

Z̃N → Z uniformly on [0, β(T )], Z continuous on [0, β(T )]
}

.
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Since β(T ) < ∞ almost surely, and Z̃N → Z uniformly on compact intervals, we have

P
(
ΨT
)

= 1. It follows easily that on ΨT ,

lim sup
N→∞

αN (s) ≤ α(s), lim inf
N→∞

βN (s) ≥ β(s), ∀s ∈ [0, T ]. (2.68)

Now, on ΨT , given Z, choose s1, . . . , sk ∈ [0, T ]\Q̄ such that each si lies in the ith longest

excursion of Z, which has non-empty intersection with [0, T ]. That is, β(si)−α(si) = CT
i .

Now consider any limit point

(ᾱ(s1), . . . , ᾱ(sk), β̄(s1), . . . , β̄(sk), C̄T
1 , . . . , C̄T

k ), (2.69)

of (αN (s1), . . . , αN (sk), βN (s1), . . . , βN (sk), CN,T
1 , . . . , CN,T

k ), as N → ∞, where we

allow C̄T
1 and at most one of the β̄(si) to be ∞. By compactness, we can be sure that

there are such limit points. To avoid introducing extra notation, we will assume that

(2.69) is a true limit, rather than a subsequential limit.

By (2.68), for any ℓ ≤ k,

ℓ⋃
i=1

[ᾱ(si), β̄(si)] ⊇
ℓ⋃

i=1
[α(si), β(si)],

where the sets in the union on the right-hand side have disjoint interiors. By construction

of αN (si), βN (sj), any pair of intervals [αN (si), βN (si)] and [αN (sj), βN (sj)] are either

equal or disjoint. Therefore the intervals in the union on the left-hand side are either

equal or have disjoint interiors. So let Γℓ ⊆ [ℓ] be some set of indices such that

[ᾱ(si), β̄(si)] ̸= [ᾱ(sj), β̄(sj)], ∀i ̸= j ∈ Γℓ, and
⋃

i∈Γℓ

[ᾱ(si), β̄(si)] ⊇
ℓ⋃

i=1
[α(si), β(si)].

Furthermore, we may demand Γ1 ⊆ Γ2 ⊆ . . . ⊆ Γk. Thus

∑
i∈Γℓ

(β̄(si) − ᾱ(si)) ≥
ℓ∑

i=1
(β(si) − α(si)).
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That is,

(
β̄(s1) − ᾱ(s1), . . . , β̄

(
s|Γk|

)
− ᾱ

(
s|Γk|

)
, 0, . . . , 0

)
≽ (β(s1) − α(s1), . . . , β(sk) − α(sk)).

(2.70)

For any N , and any s ∈ [0, T ]\Q̄, the interval [αN (s), βN (s)] is associated via the

reflected exploration process with exactly one component of Ḡ(N, p). The size of this

component is at least (βN (s) − αN (s))N2/3.

Note. The two cases where the size of the component is not equal to (βN (s)−αN (s))N2/3

are: 1) when βN (s) = ∞; 2) when Z̃N (s) = 0. In the latter case, since we have excluded

the possibility s ∈ N−2/3Z, it must hold that Z̃N is locally constant and equal to zero

around s, so the component has size 1.

For large enough N , the intervals {[ᾱN (si), β̄N (si)] : i ∈ Γk} are disjoint, and so

N−2/3(CN,T
1 , . . . , CN,T

k ) ≽
(
βN (s1) − αN (s1), . . . , βN

(
s|Γk|

)
− αN

(
s|Γk|

)
, 0, . . . , 0

)
.

Since majorisation is preserved under limits (as the relation is a finite union of closed

sets in Rk × Rk), we obtain

(C̄T
1 , . . . , C̄T

k ) ≽
(
β̄(s1) − ᾱ(s1), . . . , β̄

(
s|Γk|

)
− ᾱ

(
s|Γk|

)
, 0, . . . , 0

)
.

So, combining with (2.70), we obtain

(C̄T
1 , . . . , C̄T

k ) ≽ (CT
1 , . . . , CT

k ), (2.71)

which holds for every limit point (C̄T
1 , . . . , C̄T

k ) of CN,T on the event ΨT and so, in

particular, P-almost surely.

2.3.4 Stochastic sandwiching via excursions above δ

We now bound CT stochastically (in the sense of weak majorisation) in the other

direction.
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Fix some δ > 0. For any realisation of the path Z̃N , the set DN,δ,T := {s ∈

[0, T ] : Z̃N (s) > δ} is a finite union of left-closed, right-open intervals. Let CN,δ,T =

(CN,δ,T
1 , . . . , CN,δ,T

k ) be the sequence of the k largest lengths of those intervals which are

contained within the support of some excursion of Z̃N (above zero) which has non-empty

intersection with [0, T ]. These are arranged in decreasing order, augmented with zeros

if necessary. Certainly, for any δ, CN,T ≽ CN,δ,T for each trajectory of Z̃N . We will

show that CT majorises limit points of CN,δ,T , again P-almost surely.

Again, we work on the event ΨT . Then, consider DT := {s ∈ [0, T ] : Z(s) > 0}, the

collection of open intervals where the limit process Z is positive. On ΨT , for large

enough N , we have Z̃N (s) ≤ δ/2 whenever Z(s) = 0, and so DN,δ,T ⊆ DT . Therefore

the sequence of all interval lengths in DN,δ,T in non-increasing order is majorised by the

corresponding ordered sequence of interval lengths in DT . So in particular

(CT
1 , . . . , CT

k ) ≽ (CN,δ,T
1 , . . . , CN,δ,T

k ),

for large enough N , and hence on ΨT any limit point C̄δ,T of CN,δ,T satisfies

(CT
1 , . . . , CT

k ) ≽ (C̄δ,T
1 , . . . , C̄δ,T

k ).

By (2.63), the collection (CN,T , CN,δ,T )N≥1 is tight in Rk × Rk. Let C̄T , C̄δ,T , be any

joint weak limit of CN,T , CN,δ,T . Since P
(
ΨT
)

= 1, by combining with (2.71), we have

shown that

C̄T ≽st CT ≽st C̄δ,T . (2.72)

2.3.5 Comparing CN,T and CN,δ,T via uniform trees

We will now show for small δ, any weak limits C̄T , C̄δ,T are close in distribution in the

sense of the Lévy–Prohorov metric on Rk. To do this, we have to bound above the

probability that the exploration process drops below height δN1/3 in the middle of an

excursion above zero of width Θ(N2/3). The components of Ḡ(N, p) are, conditional on

their sizes, uniform trees. We will apply results of Aldous in [3] to show that the large
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excursions of Z̃N are well-approximated by Brownian excursions. We then use this to

bound the probability that Z̃N hits δ without hitting zero.

Let TK be a uniform choice from the KK−2 unordered trees with vertex labels given

by [K]. Then, let 1 = STK
0 , STK

1 , . . . , STK
K = 0, be the corresponding breadth-first

exploration process. The appropriate rescaling to consider is then S̃TK (s) := 1√
K

STK

⌊Ks⌋,

for s ∈ [0, 1]. Recall from Proposition 1.13 that

(
S̃TK (s), s ∈ [0, 1]

)
d→ (Bex(s), s ∈ [0, 1]), (2.73)

where Bex is a standard normalised Brownian excursion on [0, 1], and convergence is in

the uniform topology.

We say the event χN,T (δ, ϵ, γ) holds if ∃M, K ∈ Z≥0 with K
N2/3 ≥ γ, and M

N2/3 ≤ T , such

that {vM , . . . , vM+K−1} is a component of Ḡ(N, p), and

∃m ∈ [ϵK, (1 − ϵ)K] s.t. Z̃N
(

M+m
N2/3

)
≤ δ. (2.74)

That is, Ḡ(N, p) has a component of size at least γN2/3 which is seen, at least partially,

in the exploration process before time TN2/3, and for which the exploration process

takes a small value in the interior of the interval defining the component. Now, given

any M, K, and conditional on the vertices {vM , . . . , vM+K−1}, and the statement that

they form a component, the structure of this component is a uniform tree. That is,

(ZN
M , . . . , ZN

M+K−1) d= (STK
1 , . . . , STK

K ).

Therefore the following processes on s ∈ [0, 1] can be identified in distribution:

(
Z̃N

(
M+sK
N2/3

))
=
(
N−1/3ZN

⌊M+sK⌋

)
d=
(
N−1/3STK

⌊sK⌋

)
=
(

K1/2

N1/3 S̃TK (s)
)
.
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Therefore, for every M, K, conditional on any choice of vertices {vM , . . . , vM+K−1}, the

probability that (2.74) holds is equal to the probability that

inf
s∈[ϵ,1−ϵ]

S̃TK (s) ≤ N1/3

K1/2 δ. (2.75)

By assumption N1/3

K1/2 δ ≤ γ−1/2δ, and by (2.73), and the Portmanteau lemma,

lim sup
K→∞

P
(

inf
s∈[ϵ,1−ϵ]

S̃TK (s) ≤ γ−1/2δ

)
≤ lim sup

K→∞
P
(

inf
s∈[ϵ,1−ϵ]

S̃TK (s) < 2γ−1/2δ

)

≤ P
(

min
s∈[ϵ,1−ϵ]

Bex(s) < 2γ−1/2δ

)
.

Therefore, we obtain

lim sup
N→∞

P
(
χN,T (δ, ϵ, γ)

)
≤ E

[
# cpts size ≥ γN2/3 seen before TN2/3 in ZN

]
× P

(
min

s∈[ϵ,1−ϵ]
B(s) < 2γ−1/2δ

)

lim sup
N→∞

P
(
χN,T (δ, ϵ, γ)

)
≤
(

T
γ + 1

)
P
(

min
s∈[ϵ,1−ϵ]

B(s) < 2γ−1/2δ

)
. (2.76)

Given ϵ, γ, we can choose δ > 0 so that the RHS of (2.76) is arbitrarily small. Now, fix

some γ > 2ϵ, and consider the event χN,T (δ, ϵ
2γ , ϵ). Then, when χN,T (δ, ϵ

2γ , ϵ), does not

hold, for every component with size K ≥ ϵN2/3, there is a unique excursion of ZN above

δN1/3 of length at least K(1 − ϵ
γ ). We call such an excursion above δN1/3 a principal

excursion. If we also have CN
1 ≤ γN2/3, then the length of any principal excursion is at

least K − ϵN2/3. Thus, any other excursion above δN1/3 within the component of size

K, has length at most ϵN2/3.

So, consider any i ≤ k such that CN,T
1 ≥ . . . CN,T

i ≥ ϵN2/3. Then, on χN,T (δ, ϵ
2γ , ϵ)c

and {CN
1 ≤ γN2/3}, at most i − 1 elements of CN,δ,T can be larger than CN,T

i . These

are the principal excursions obtained from each of CN,T
1 , . . . , CN,T

i−1 . No other excursions

above δN2/3 obtained from CN,T
1 , . . . , CN,T

i−1 are relevant, since they have lengths at

most ϵN2/3. However, these principal excursions from CN,T
1 , . . . , CN,T

i all have length
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at least CN,T
i (1 − ϵ

γ ). Thus we obtain

CN,T
i ≥ CN,δ,T

i ≥ CN,T
i (1 − ϵ

γ ) ≥ CN,T
i − ϵN2/3. (2.77)

And so

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,T
i − CN,δ,T

i

∣∣∣ > ϵ

)
≤ lim sup

N→∞
P
(
CN

1 > γ
)

+ lim sup
N→∞

P
(
χN,T (δ, ϵ

2γ , ϵ)
)
.

For fixed ϵ > 0, letting γ → ∞ we can make the first term on the RHS small, and then

by letting δ ↓ 0 we can make the second term small. In particular, we can demand

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,T
i − CN,δ,T

i

∣∣∣ > ϵ

)
≤ ϵ. (2.78)

Now, recall C̄T , C̄δ,T is some joint weak limit of (CN,T , CN,δ,T ). Let π be the usual

Lévy–Prohorov metric for probability measures on Rk, with respect to the ℓ∞ norm on

Rk. From (2.72) and (2.78), we have for each ϵ > 0,

π(L(C̄T ),L(C̄δ,T )) ≤ ϵ, C̄δ,T ≼ CT ≼ C̄T .

From this, it is easy to see that π(L(CT ),L(C̄T )) ≤ kϵ. Since ϵ > 0 is arbitrary, we find

C̄
d= C, and thus the required convergence in distibution (2.67) follows.

2.3.6 Proof of Theorem 2.7

In both the discrete exploration processes and the limiting SDEs, we would expect the

k largest components/excursions to appear early. From (2.65),

lim sup
T →∞

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,T
i − CN

i

∣∣∣ ≤ ϵ

)
= 1.

By comparing the drifts, we can couple Zλ and Bλ as defined in (2.3), such that

Zλ(t) ≤ Bλ(t) for all t ≥ 0. The largest excursion of Bλ above zero is almost surely
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finite, and so the same holds for Zλ. Thus

lim sup
T →∞

P
(
(CT

1 , . . . , CT
k ) = (C1, . . . , Ck)

)
= 1.

So we can lift (2.67) to conclude

(CN
1 , . . . , CN

k ) d→ (C1, . . . , Ck), (2.79)

as N → ∞.

Finally, we show convergence in ℓ2
↘. To lift (2.79), we require

lim sup
N→∞

E
[ ∞∑

i=1
(CN,λ

i )2
]

< ∞, E
[ ∞∑

i=1
(Ci)2

]
< ∞.

By Lemma 2.10, it suffices to show the first of these with for G(N, p) instead of Ḡ(N, p).

This appears as Corollary 5.2 in [34]. From the coupling of Zλ and Bλ, it suffices to

show the second bound for the excursion lengths of Bλ. This result is shown as Lemma

25 of Aldous’s original result [5].

This completes the proof of Theorem 2.7.

2.4 Detailed combinatorial calculations

In this section we give proofs of three detailed lemmas required for the proof of

Proposition 2.12 in the previous sections. We begin by restating and proving Lemma

2.17.

2.4.1 Proof of Lemma 2.17

Lemma. Fix λ− < λ+ ∈ R. Given p ∈ (0, 1), let λ = λ(N, p) = N1/3(Np − 1). Then

P(G(N, p) acyclic) = (1 + o(1))g(λ)e3/4√
2πN−1/6, (2.80)
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uniformly for λ ∈ [λ−, λ+] as N → ∞.

Proof. For this range of p, we will see that the sum in (2.19) is dominated by contributions

on the scale m = N
2 + λN2/3

2 + Θ(N1/2). Shortly we will be required to approximate

these relevant contributions in detail, but first we show that contributions from outside

this regime vanish as N → ∞. We consider those m for which

∣∣∣∣∣m − N

2 − λN2/3

2

∣∣∣∣∣ ≥ N3/5.

Let B ∼ Bin
((N

2
)
, p
)
. Since f(N, m) ≤

((N
2 )
m

)
,

(1 − p)(
N
2 )
⌈N/2+λN2/3/2−N3/5⌉∑

m=0
f(N, m)

(
p

1−p

)m
+

N−1∑
⌊N/2+λN2/3/2+N3/5⌋

f(N, m)
(

p
1−p

)m



≤ P
(∣∣B −

(N
2
)
p
∣∣ ≥ N3/5

)
≤ Var(B)

N6/5 ≤ N2p

2N6/5 ≤ 1 + λ+N−1/3

2N1/5 ≪ N−1/6. (2.81)

Here we used Chebyshev’s inequality, which is sufficient for our purposes, but note that

the probability of this moderate deviation event for B decays exponentially in some

positive power of N .

Given λ ∈ R and m ≤ N ∈ N, define x = x(N, m, λ) =
√

2
N1/2

[
m − N

2 − λN2/3

2

]
. Then,

we consider the set of m satisfying

∣∣∣∣∣m − N

2 − λN2/3

2

∣∣∣∣∣ ≤ N3/5, that is, |x| ≤
√

2N1/10. (2.82)

Thus

N − m = N
2 − λ

2 N2/3 − x√
2N1/2, and so 2(N − m)

N
= 1 − λN−1/3 −

√
2xN−1/2.



74 Critical random forests

From this, we obtain

log
(2(N − m)

N

)
= −λN−1/3 −

√
2xN−1/2 − λ2

2 N−2/3 −
√

2λxN−5/6

− λ3

3 N−1 − x2N−1 + O(N−16/15),

uniformly on the set of m defined at (2.82). In calculating the scale of this final error

term, we use that |x| ≤
√

2N1/10. Then

(N − m) log
(2(N − m)

N

)
= −

[
λ
2 N2/3 + x√

2N1/2 + λ2

4 N1/3 + λx√
2N1/6 + λ3

3 + x2

2

]
+
[

λ2

2 N1/3 + λx√
2N1/6 + λ3

4

]
+
[

λx√
2N1/6 + x2

]
+ O

(
N−1/15

)
= −λ

2 N2/3 − x√
2N1/2 + λ2

4 N1/3 + λx√
2N1/6

− λ3

12 + x2

2 + O
(
N−1/15

)
.

We now return to (2.9) and use Stirling’s approximation and the expression we have

just shown, as well as continuity of g. Uniformly on the set of m in (2.82), (for which,

recall, N − m = (1 + o(1))N/2),

f(N, m) = (1 + o(1))
√

2πNN−1/6

2N−m(N − m)!g
(2m − N

N2/3

)
,

= (1 + o(1))g(λ)
√

2πNN−1/6

2N−m
· 1√

2π
√

N − m

(
e

N − m

)N−m

= (1 + o(1))g(λ)
√

2Nm−2/3 exp(N − m) exp
(
−(N − m) log

(
2(N−m)

N

))
= (1 + o(1))g(λ)

√
2Nm−2/3 exp

(
N
2 − λ

2 N2/3 − x√
2N1/2

)
× exp

(
λ
2 N2/3 + x√

2N1/2 − λ2

4 N1/3 − λx√
2N1/6 + λ3

12 − x2

2

)
= (1 + o(1))g(λ)

√
2Nm−2/3 exp

(
N
2 − λ2

4 N1/3 − λx√
2N1/6 + λ3

12 − x2

2

)
. (2.83)

Now, we have

(
N

2

)
log(1 − p) =

(
N

2

)[
−1+λN−1/3

N − 1
2N−2 + O(N−7/3)

]
= −N

2 − λ
2 N2/3 + 1

4 + O
(
N−1/3

)
, (2.84)
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and also

log
(

Np

1 − p

)
= log(1 + λN−1/3) − log(1 − p)

= λN−1/3 − λ2

2 N−2/3 + λ3

3 N−1 + N−1 + O
(
N−4/3

)
.

At this point, recall the definition

m = N
2 + λ

2 N2/3 + x√
2N1/2.

So, uniformly on the set of m for which |x| ≤
√

2N1/10, as before,

m log
(

Np

1 − p

)
=
[

λ
2 N2/3 − λ2

4 N1/3 + λ3

6 + 1
2

]
+
[

λ2

2 N1/3 − λ3

4

]
+ λx√

2N1/6 + O
(
N−1/6

)
, (2.85)

where each bracket corresponds to a term in the definition of m.

Therefore, combining (2.84) and (2.85), uniformly in the same sense,

(1 − p)(
N
2 )( p

1−p

)m
= (1 + o(1))N−m exp

(
−N

2 + λ2

4 N1/3 + λx√
2N1/6 − λ3

12 + 3
4

)
. (2.86)

Combining (2.83) and (2.86), we obtain

(1 − p)(
N
2 )( p

1−p

)m
f(N, m) = (1 + o(1))g(λ)

√
2N−2/3 exp

(
−x2

2 + 3
4

)
. (2.87)

We now fix N and λ, and sum this quantity over the range of m given by (2.82). Recall

that x is linear in m, with scaling factor N1/2
√

2 , and so as N → ∞, the sum of (2.87)

over this range of m converges after rescaling to a integral. That is,

(1 − p)(
N
2 )

⌈N/2+λN2/3/2+N3/5⌉∑
m=⌊N/2+λN2/3/2−N3/5⌋

f(N, m)
(

p
1−p

)m

= (1 + o(1))e3/4g(λ)
√

2N−2/3
⌈N/2+λN2/3/2+N3/5⌉∑

m=⌊N/2+λN2/3/2−N3/5⌋

e−x2/2
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= (1 + o(1))e3/4g(λ)
√

2N−1/6
√

2

∫ ∞

−∞
e−x2/2dx,

= (1 + o(1))e3/4g(λ)
√

2πN−1/6.

Combining with (2.81), which showed that contributions to the sum (2.19) outside this

range of m are o(N−1/6), we obtain the required result.

2.4.2 Proof of Lemma 2.19

We restate Lemma 2.19.

Lemma. Fix constants λ−, λ+, ϵ, K, T as in Definition 2.18. Then,

P
(
G(N ′, p) ∈ AN ′,r,k

)
= (1 + o(1))g(λ − s − a)e3/4N−5/6ba−3/2 (2.25)

× exp
(
−b(λ − s) − b2

2a + (λ−s−a)3−(λ−s)3

6

)
,

uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T ), as N → ∞.

Proof. We will add the required uniformity in N ′ at the end of this proof. First, we

show

P(G(N, p) ∈ AN,r,k) = (1 + o(1))g(λ − a)e3/4N−5/6ba−3/2 (2.88)

× exp
(
−bλ − b2

2a + (λ−a)3−λ3

6

)
,

uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, 0), as N → ∞.

Subject to the constraint that vertices 1, . . . , r are in different tree components, with

sum equal to k, there are
(N−r

k−r

)
ways to choose which remaining vertices are part of this

stack forest. Given this choice, we can view the trees as rooted at the vertices [r]. In

particular, Cayley’s formula states that there are rkk−r−1 such labelled rooted forests.

Hence

P(G(N, p) ∈ AN,r,k) = (1 − p)(
N
2 )(N−r

k−r

)( p
1−p

)k−r
rkk−r−1

N−k−1∑
m=0

f(N − k, m)
(

p
1−p

)m
.

(2.89)
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By Lemma 2.17, uniformly on (p, k) and any (arbitrary) r such that (N, p, r, k) ∈

ΨN (λ−, λ+, ϵ, K, 0),

(1 − p)(
N−k

2 )
N−k−1∑

m=0
f(N − k, m)

(
p

1−p

)m
= (1 + o(1))g(λ(N − k, p))e3/4√

2πN−1/6.

Recall that this final sum is, up to a power of (1 − p), the probability that G(N − k, p)

is acyclic. We also have

λ(N − k, p) = (N − aN2/3)1/3
[
(N − aN2/3)p − 1

]
= (1 + o(1))N1/3

[
(Np − 1) − aN−1/3

]
= (1 + o(1))[λ(N, p) − a + o(1)].

So, again uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, 0),

(1 − p)(
N−k

2 )
N−k−1∑

m=0
f(N − k, m)

(
p

1−p

)m
= (1 + o(1))g(λ − a)e3/4√

2πN−1/6. (2.90)

We now carefully address the other terms in (2.89), starting with (1−p)(
N
2 )−(N−k

2 )( p
1−p

)k−r
.

Recall that Np = 1 + λN−1/3. Firstly

log
[(

1 + λN−1/3
)k−r

]
=
[
aN2/3 − bN1/3

][
λN−1/3 − λ2

2 N−2/3 + O
(
N−1

)]
= λaN1/3 − λb − λ2a

2 + O
(
N−1/3

)
.

Also

(N
2
)

−
(N−k

2
)

− k + r = N2

2 − (N−k)2

2 + k
2 − k + r

= Nk − k2

2 + O
(
N2/3

)
= aN5/3 − a2

2 N4/3 + O
(
N2/3

)
,

from which

log
[
(1 − p)

(N
2
)

−
(N−k

2
)

−k+r
]

= log
[(

1 − N−1 − λN−4/3
)(N

2
)

−
(N−k

2
)

−k+r
]



78 Critical random forests

=
[
aN5/3 − a2

2 N4/3 + O
(
N2/3

)][
−N−1 − λN−4/3 + O

(
N−2

)]
= −aN2/3 − λaN1/3 + a2

2 N1/3 + λa2

2 + O
(
N−1/3

)
.

From this,

(1 − p)(
N
2 )−(N−k

2 )( p
1−p

)k−r

= (1 + o(1))N−(k−r) exp
(
−aN2/3 + a2

2 N1/3 − λb + λa
2 (a − λ)

)
. (2.91)

Turning now to the binomial coefficent
(N−r

k−r

)
in (2.89), we treat each factorial separately.

First observe that

log
[(

1 − bN−2/3
)N−bN1/3]

=
[
N − bN1/3

][
−bN−2/3 + O

(
N−4/3

)]
= −bN1/3 + O(N−1/3).

log
[(

1 − aN−1/3
)N−aN2/3]

=
[
N − aN2/3

][
−aN−1/3 − a2

2 N−2/3 − a3

3 N−1 + O
(
N−4/3

)]
= −aN2/3 + a2

2 N1/3 + a3

6 + O
(
N−1/3

)
log
[(

1 − b
aN−1/3

)aN2/3−bN1/3]
=
[
aN2/3 − bN1/3

][
− b

aN−1/3 − b2

2a2 N−2/3 + O
(
N−1

)]
= −bN1/3 + b2

2a + O
(
N−1/3

)
.

Then Stirling’s approximation gives

(
N − bN1/3

)
! = (1 + o(1))

√
2πN

eN−bN1/3

(
N − bN1/3

)N−bN1/3

= (1 + o(1))
√

2πN

eN−bN1/3 NN−bN1/3 exp
(
−bN1/3

)
(
N − aN2/3

)
! = (1 + o(1))

√
2πN

eN−aN2/3

(
N − aN2/3

)N−aN2/3

= (1 + o(1))
√

2πN

eN−aN2/3 NN−aN2/3 exp
(
−aN2/3 + a2

2 N1/3 + a3

6

)
(
aN2/3 − bN1/3

)
! = (1 + o(1))

√
2π

√
aN2/3

eaN2/3−bN1/3

(
aN2/3 − bN1/3

)aN2/3−bN1/3

= (1 + o(1))
√

2π
√

aN2/3

eaN2/3−bN1/3 aaN2/3−bN1/3
N

2
3 [aN2/3−bN1/3]

exp
(
−bN1/3 + b2

2a

)
.
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So we obtain

(
N − r

k − r

)
= (1 + o(1)) 1√

2π
a−(aN2/3−bN1/3+1/2)N

1
3 (aN2/3−bN1/3−1) (2.92)

× exp
(
aN2/3 − a2

2 N1/3 − b2

2a − a3

6

)
.

The final ingredient of (2.89) is the term

rkk−r−1 = baaN2/3−bN1/3−1N
2
3 [aN2/3−bN1/3]− 1

3 . (2.93)

To recover (2.89), we study the product of (2.90), (2.91), (2.92) and (2.93). Note that

exp
(
−λ2a

2 + λa2

2 − a3

6

)
= exp

(
(λ−a)3−λ3

6

)
. So we can treat all of the terms in (2.89)

uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, 0), as N → ∞ and obtain

(2.88) as required.

We now finish the proof of (2.25), where in addition we require a uniform estimate

over N ′ ∈ [N − TN2/3, N ]. We consider (N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T ) as N → ∞.

Observe that

λ′ := λ(N ′, p) = (1 + o(1))(λ(N, p) − s), N ′ = (1 + o(1))N, (2.94)

b′ := b(N ′, r) = (1 + o(1))b(N, r), a′ = a(N ′, k) = (1 + o(1))a(N, k). (2.95)

Now fix δ ∈ (0, ϵ). Then, for large enough N ,

(N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T )

⇒ (N ′, p, r, k) ∈ ΨN ′(λ− − T − δ, λ+ + δ, ϵ − δ, K + δ, 0). (2.96)

Certainly N − TN2/3 → ∞ as N → ∞, so by (2.88) and (2.96),

P
(
G(N ′, p) ∈ AN,r,k

)
= (1 + o(1))g(λ′ − a′)e3/4N ′−5/6b′a′−3/2

× exp
(
−b′λ′ − b′2

2a′ + (λ′−a′)3−λ′3

6

)
,
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uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T ) as N → ∞. Finally, using (2.94), (2.95),

and the fact that g is uniformly continuous, we may conclude

P
(
G(N ′, p) ∈ AN ′,r,k

)
= (1 + o(1))g(λ − s − a)e3/4N−5/6ba−3/2

× exp
(
−b(λ − s) − b2

2a + (λ−a−s)3−(λ−s)3

6

)
,

as required, uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ϵ, K, T ).

2.4.3 Proof of Lemma 2.21

We now restate and prove Lemma 2.21, which was used in the proof of Lemma 2.20.

Lemma. Given the same constants as in Lemma 2.20, there exist constants M < ∞

and γ > 0 such that

(k + 1)P
(
G(N ′, p) ∈ AN ′,r,k+1

)
kP
(
G(N ′, p) ∈ AN ′,r,k

) ≤ 1 − γN−2/3, (2.31)

for large enough N , whenever (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+, K, T ) and k ∈ [MN2/3, N ′ − 1].

Proof. Again, we will use (2.89), which for convenience we recall here.

P(G(N, p) ∈ AN,r,k) = (1 − p)(
N
2 )(N−r

k−r

)( p
1−p

)k−r
rkk−r−1

N−k−1∑
m=0

f(N − k, m)
(

p
1−p

)m

= (1 − p)(
N
2 )−(N−k

2 )(N−r
k−r

)( p
1−p

)k−r
rkk−r−1F (N − k, p).

We apply this to (2.31) (with N replaced by N ′). Note that
( N ′−r

k+1−r

)
/
(N ′−r

k−r

)
= N ′−k

k+1−r ,

and
(N ′−k

2
)

−
(N ′−k−1

2
)

= N ′ − k − 1. We obtain

(k + 1)P
(
G(N ′, p) ∈ AN ′,r,k+1

)
kP
(
G(N ′, p) ∈ AN ′,r,k

)
=

(k + 1)(1 − p)−(N′−k−1
2 )( N ′−r

k+1−r

)( p
1−p

)
r(k + 1)k−rF (N ′ − k − 1, p)

k(1 − p)−(N′−k
2 )(N ′−r

k−r

)
rkk−r−1F (N ′ − k, p)
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= k + 1
k + 1 − r

· (1 − p)N ′−k−2 · N ′ − k

N
·
(
1 + λN−1/3

)
·
(

k + 1
k

)k−r

· F (N ′ − k − 1, p)
F (N ′ − k, p) .

(2.97)

We proceed in two parts. First we control the ratio of the F (N ′ − k, p) terms using

(2.20). Then, we control the ratio of the remaining terms with an elementary but long

Taylor expansion.

First, note that from the second inequality in (2.20), that for k ≤ N ′ − 1,

1 − F (N ′ − k, p)
F (N ′ − k − 1, p) ≤ 1

2(N ′ − k − 1)p2E
[
|CN ′−k−1,p(v)|

]
.

where |CN,p(v)| is the size of the component containing a uniformly chosen vertex v in

G(N, p). Now, via (2.94),

lim sup
N→∞

λ
(
N − ⌊MN2/3⌋, p

)
≤ λ+ − M.

When k ≥ MN2/3, we have

N−1/3E
[
|CN ′−k−1,p(v)|

]
≤ N−1/3E

[
|CN−⌊MN2/3⌋,p(v)|

]
,

and so from (2.10),

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

k≥MN2/3

N−1/3E
[
|CN ′−k−1,p(v)|

]
≤ Θλ+−M .

We obtain

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

λ(N,p)∈[λ−,λ+]
0≤k≤N ′−1

N2/3
[
1 − F (N ′ − k, p)

F (N ′ − k − 1, p)

]
≤ 1

2Θλ+−M ,

from which it follows that

lim sup
N→∞

sup
N ′∈[N−T N2/3,N ]

λ(N,p)∈[λ−,λ+]
0≤k≤N ′−1

N2/3
[

F (N ′ − k − 1, p)
F (N ′ − k, p) − 1

]
≤ 1

2Θλ+−M . (2.98)
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We now treat the remaining terms in the ratio (2.97), that is

k + 1
k + 1 − r

· (1 − p)N ′−k−2 · N ′ − k

N
·
(
1 + λN−1/3

)
·
(

k + 1
k

)k−r

.

We split the calculation into several steps. Recall the rescalings a = k
N2/3 and b = r

N1/3 .

Since we assume k ≥ MN2/3, we have 1
a = O(1).

log
(

k + 1
k + 1 − r

)
= − log

(
1 − r

k+1

)
= r

k+1 + 1
2

(
r

k+1

)2
+ O(N−1)

= b
aN−1/3 + b2

2a2 N−2/3 + O
(
N−1

)
,

log
(
1 + λN−1/3

)
= λN−1/3 − λ2

2 N−2/3 + O(N−1),

log
[(

k + 1
k

)k−r
]

=
[
aN2/3 − bN1/3

][
1
aN−2/3 − 1

2a2 N−4/3 + O
(
N−2

)]
= 1 − b

aN−1/3 − 1
2aN−2/3 + O

(
N−1

)
.

The final two terms in the product require extra care, because there is no finite upper

bound on a. However, since a ≤ N1/3, we can still handle the error in the following

term:

log
[
(1 − p)N ′−k−2

]
=
[
N − (s + a)N2/3 − 2

][
−N−1 − λN−4/3 + O

(
N−2

)]
= −1 + (s − λ + a)N−1/3 + λ(a + s)N−2/3 + O(N−1).

Finally, we have

log
(

N ′ − k

N

)
= log

(
1 − sN−1/3 − aN−1/3

)
≤ −(a + s)N−1/3 − 1

2(a + s)2N−2/3.

So there exists a constant C = C(λ−, λ+, ϵ, K, T ) < ∞ such that

log
[

k + 1
k + 1 − r

· (1 − p)N ′−k−2 · N ′ − k

N
·
(
1 + λN−1/3

)
·
(

k + 1
k

)k−r
]

≤ N−2/3
[
−1

2(λ − (a + s))2 + b2

2a2 − 1
2a

]
+ C

N
, (2.99)

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ϵ, K, T ) and k ≥ MN2/3, as N → ∞. Recall that

b ∈ [ϵ, K], and that k ≥ MN2/3 is equivalent to a ≥ M . So for large enough M , the
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term b2

2a2 is dominated by the term − 1
2a in (2.99). So it holds that for large enough N ,

k + 1
k + 1 − r

· (1 − p)N ′−k−2 · N ′ − k

N
·
(
1 + λN−1/3

)
·
(

k + 1
k

)k−r

≤ 1 − 1
3K

N−2/3.

Using Proposition 2.11, we now also demand that M be large enough that Θλ+−M ≤ 1
6K .

So combining with (2.98), we can now approximate the LHS of (2.31) as required. Now

take γ ∈ (0, 1
6K ), and we find that for large enough N

(k + 1)P
(
G(N, p) ∈ AN ′,r,k+1

)
kP
(
G(N, p) ∈ AN ′,r,k

) ≤ 1 − γN−2/3.





Chapter 3

Large components in

inhomogeneous random graphs

In Chapter 5 we will consider a version of mean-field frozen percolation where the

vertices have types drawn from a finite set. In this chapter, before introducing the

frozen percolation dynamics, we prove some results about a certain class of random

graphs where the vertices have types.

This chapter has four sections. First, we define the inhomogeneous random graph model

(IRG), and review Bollobás, Janson and Riordan’s results about its phase transition,

its giant component, and the natural connection to a multitype branching process. In

Section 3.2, we present a new exponential tail bound for the size of a component in an

IRG close to criticality. We use this in Section 3.3, where we prove a concentration

result for the proportion of types in any large component of such an IRG close to

criticality. During this and subsequent chapters, we will require some technical results

about non-negative matrices and their eigenvectors. To avoid breaking the flow of the

otherwise mostly probabilistic arguments, we collect the proofs of these technical results

in Section 3.4.
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3.1 Background, definitions and notation

3.1.1 Motivation

In the standard Erdős–Rényi random graph G(N, c/N), the degree of a given vertex

has a binomial distribution. Furthermore, for large N , the degrees of different vertices

are almost independent, and so the empirical degree distribution is approximately

Poisson(c). Degree sequences in networks observed in the real-world are much less

homogeneous. In many contexts, such as modelling the worldwide web, we might

imagine a small collection of ‘hubs’ with large degree, connected to each other, and

supporting sparsely-connected outliers.

To model these effects, it is natural to consider relaxing the independence between

different edges, or the assumption that vertices have the same underlying local degree

distribution. Albert and Barabási [2] studied heuristics for several such models, and

many subsequent papers have treated their mathematical properties.

3.1.2 Inhomogeneous random graphs with k types

This model was introduced by Söderberg [64] and studied in a version with more general

type-spaces by Bollobás, Janson and Riordan [15].

Throughout, we fix a positive integer k. A graph with k types is a graph G = (V, E)

together with a type function, type : V → [k].

Definition 3.1. A k × k symmetric matrix κ with non-negative real entries is a kernel.

If κ has positive entries, then it is a positive kernel. We refer to the sets of kernels and

positive kernels as Rk×k
≥0 and Rk×k

+ respectively. Similarly, the set of kernels with entries

in [a, b] is [a, b]k×k. We use the abbreviations κmax := max
i,j∈[k]

κi,j and κmin := min
i,j∈[k]

κi,j .

When we consider the proportions of vertices of each type, we will refer to the sets

Π1 :=

π ∈ Rk
≥0 :

∑
i∈[k]

πi = 1

, Π≤1 :=

π ∈ Rk
≥0 :

∑
i∈[k]

πi ≤ 1

, (3.1)
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of probability distributions and sub-distributions on [k].

Note. We will regularly write κ ≤ κ′ for kernels and similarly v ≤ v′ for vectors. Unless

specified otherwise, this ordering is always taken to be coordinate-wise.

Definition 3.2. For each N ∈ N, p = (p1, . . . , pk) ∈ Nk
0 and κ a kernel, the inhomoge-

neous random graph GN (p, κ) is a random graph with k types defined as follows:

• GN (p, κ) has vertex set
{

1, 2, . . . ,
∑k

i=1 pi

}
.

• The type function is chosen uniformly at random from the
( ∑ pi

p1, ... ,pk

)
functions

f : [∑ pi] → [k] such that |f−1({i})| = pi for each i.

• Conditional on the type function, each edge vw (with v ≠ w ∈ [∑ pi]) is present

with probability

1 − exp(−κtype(v),type(w)/N),

independently of all other pairs.

Remark. Note that the edge probability 1 − exp(−κi,j/N) ≈ κi,j/N . While most

results hold with this simpler alternative definition, the one taken here avoids the

necessity to ensure N ≥ κmax, and, importantly, fits the natural extension to a graph

process, where edges appear at independent exponentially distributed times.

Remark. We are using slightly different notation to [15]. On many occasions, we will

assume ∑ pi = N , whence p/N is a probability distribution. In the next chapter, the

main process we study will involve varying p/N , a vector which records the proportions

of each type. This corresponds to the measure on the (generalised) ground space as

defined in [15], where it is mostly taken to be fixed.

3.1.3 Branching process analogy and criticality of IRGs

As introduced in Section 1.1.1, the classical Erdős–Rényi random graph G(N, c
N ) contains

a giant component with high probability exactly when c > 1. This corresponds directly

to the regime in which a Galton–Watson branching process with offspring distribution

Poisson(c) has positive survival probability.
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We now discuss an analogous correspondence between the inhomogeneous random graph

and a related multitype Poisson branching process.

Definition 3.3. Given a kernel κ ∈ Rk×k
≥0 and a measure π ∈ Rk

≥0, we define the k × k

matrix κ ◦ π by

[κ ◦ π]i,j := κi,jπj .

The number of type j neighbours of a type i parent in GN (p, κ) has the distribution

Bin
(
pj , 1 − e−κi,j/N

)
when i ̸= j, and Bin

(
pj − 1, 1 − e−κi,i/N

)
when i = j. Therefore,

when N is large, the expectation of this quantity is approximately [κ ◦ p/N ]i,j .

We now define a multitype analogue of Galton–Watson trees with Poisson offspring

distributions.

Definition 3.4. For κ ∈ Rk×k
≥0 and π ∈ Π≤1, we define a branching process tree with k

types to be either empty or a random ordered, rooted tree Ξπ,κ ⊆ U together with a

map called type : Ξπ,κ → [k] as follows:

• With probability 1 −
∑k

i=1 πi, set Ξπ,κ = ∅.

• For each i, with probability πi, declare ∅ ∈ Ξπ,κ, type(∅) = i.

• For each ℓ ≥ 0, we construct the tree at generation ℓ + 1 recursively and inde-

pendently from the tree at generation ℓ. For every u = (u1, . . . , uℓ) ∈ U that

is already in Ξκ,π, and has type(u) = i, sample independent random variables

c1(u), . . . , ck(u), such that cj(u) ∼ Po(κi,jπj). Define the number of children c(u)

of u in Ξπ,κ to be ∑j∈[k] cj(u). Then, for each j ∈ [k], set

type(u1, . . . , uℓ, w) = j, for w ∈

1 +
j−1∑
j′=1

cj′(u),
j∑

j′=1
cj′(u)

.

That is, u has cj(u) children with type j.

Note. It is worth emphasising that the cases Ξκ,π = ∅ and Ξκ,π = {∅} are different.

The former is empty, while the latter has a root and no other vertices.
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Let |Ξπ,κ| be the total population size of Ξπ,κ, and describe the event {|Ξπ,κ| = ∞} as

survival, and the event {|Ξπ,κ| < ∞} as extinction.

Although the authors use slightly different terminology, Bollobás, Janson and Riordan

[15] show that for π ∈ Π1, and κ ∈ Rk×k
≥0 , the branching process Ξπ,κ is the local limit

of GN (p, κ), whenever p/N → π as N → ∞.

Definition 3.5. It follows by the Perron–Frobenius theorem that for any positive

matrix A ∈ Rk×k
+ , there exists ρ(A) ∈ R+ such that ρ(A) is a simple eigenvalue of A,

and all other eigenvalues ρ′ ∈ C satisfy |ρ′| < ρ(A). This principal eigenvalue ρ(A)

is called the Perron root [57]. Furthermore, the left-eigenvector (or right-eigenvector)

corresponding to ρ(A) can be normalised such that all its components are positive.

We define µ(A), ν(A) to be these principal left- and right-eigenvectors respectively,

normalised such that ∑k
i=1 µi(A) = ∑k

i=1 νi(A) = 1.

Remark. Some of the Perron–Frobenius theory can be extended to non-negative

matrices [29]. In particular, for A ∈ Rk×k
≥0 it remains true that there exists an eigenvalue

ρ(A) ∈ R≥0 for which a corresponding eigenvector is non-negative, and in this case all

other eigenvalues ρ′ ∈ C satisfy |ρ′| ≤ ρ(A).

Definition 3.6. Following [15], we say that both the branching process Ξπ,κ and the

random graph GN (p, κ) are subcritical if ρ(κ ◦ π) < 1, critical if ρ(κ ◦ π) = 1, and

supercritical if ρ(κ ◦ π) > 1, where π is defined to be p/N , as before.

For the branching process, the eigenvalue ρ(κ ◦ π) plays the same role as the mean of

the offspring distribution for controlling the survival probability in the original Galton–

Watson process, as described in Proposition 1.6. This is formalised for the multitype

setting shortly in Proposition 3.7, via Mode [52]. Similarly, ρ(κ ◦ π) is the analogue of c

in the original Erdős–Rényi graph G(N, c/N), for controlling the existence of a giant

component. This is formalised in Theorem 3.8 shortly.

Proposition 3.7. [52, §1 Theorem 7.1] Let π ∈ Π≤1 be positive, and let κ be a positive

kernel. Then,

• if ρ(κ ◦ π) ≤ 1, then P(|Ξπ,κ| = ∞) = 0;
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• if ρ(κ ◦ π) > 1, then ζπ,κ
i := P(|Ξπ,κ| = ∞ | type(root) = i) > 0, for all i ∈ [k].

That is, there is a positive probability of survival iff ρ(κ ◦ π) > 1. Furthermore,

analogously to (1.2), ζπ,κ is the maximal solution to

ζπ,κ
j = 1 − exp(−[(κ ◦ π)ζπ,κ]j). (3.2)

Remark. Subsequent chapters of [52] treat various cases where κ ◦ π has some zero

entries but the result is the same. Here and in Chapter 5, we will typically assume

kernels are positive, so that the uniqueness of the principal left-eigenvector is automatic.

The heuristic for the existence of a giant component is similar to the original monotype

case, which we discussed in the final example of Section 1.2.3. The probability that a

vertex is contained in a giant component approaches the probability that the branching

process survives. Furthermore, it can be shown that the graph is exponentially unlikely

to include multiple giant components, or a positive proportion of vertices contained in

‘large but not giant’ components.

In this chapter, for a graph G, we let L1(G) be the size of the largest component in G,

and L1(G) be a component with size L1(G). At no stage in this chapter will it matter

how the tie-breaking is applied if necessary. We may now state Bollobás, Janson and

Riordan’s main theorem about the giant component in a large IRG.

THEOREM 3.8. [15, Theorems 3.1, 9.10] Fix a positive kernel κ ∈ Rk×k
+ and prob-

ability distribution π ∈ Π1. Let pN ∈ Nk
0 satisfy ∑i∈[k] pN

i = N and pN /N → π, as

N → ∞. Then, with high probability as N → ∞,

L1
(
GN (pN , κ)

)
=


o(N) ρ(κ ◦ π) ≤ 1

Θ(N) ρ(κ ◦ π) > 1.

Furthermore

1
N

#
{

v ∈ L1
(
GN (pN , κ)

)
: type(v) = i

}
d→ πiζ

π,κ
i , i ∈ [k].
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Note. Bollobás, Janson and Riordan treat more general type-spaces in [15] and so

determine criticality with different notation. In the language of k types, consider defining

an inner product ⟨x, y⟩π := ∑k
i=1 xiyiπi. With respect to this inner product, κ ◦ π is

self-adjoint, since κ is symmetric. If we extend this inner product to a norm || · ||L2(π),

it can be seen that the operator norm ||Tκ||L2(π) in [15] corresponds exactly to ρ(κ ◦ π)

as used here.

To motivate the role of the principal eigenvectors in this setting when ρ(κ ◦ π) = 1 + ϵ,

we linearise (3.2). We obtain

ζπ,κ = (κ ◦ π)ζπ,κ − Θ(||ζπ,κ||2),

which is consistent with ζπ,κ = Θ(ϵ)ν(κ ◦ π), where we recall that ν(A) is the right

eigenvector corresponding to the Perron root of a positive matrix A. It is a consequence

of the self-adjointness of κ ◦ π with respect to ⟨·, ·⟩π that, when π is positive,

µi(κ ◦ π)
πi

∝ νi(κ ◦ π).

In particular, we expect

P(|Ξπ,κ| = ∞, type(root) = i) ∝ µi(κ ◦ π),

with magnitude Θ(ϵ) when ρ(κ ◦ π) = 1 + ϵ.

Returning to GN (p, κ), with π = p/N ; heuristically, whenever ρ(κ ◦ π) ≤ 1 + ϵ, it is very

unlikely that the largest component of GN (p, κ) will be substantially larger than ϵN .

Furthermore, the proportion of types in any large component will be close to µ(κ ◦ π).

In the rest of this chapter, we prove concrete results of this type, which we will use in

the next chapter when we return to frozen percolation.
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3.2 Exponential bounds on component size

In this section, we consider IRGs GN (p, κ) satisfying ρ(κ ◦ p/N) ≤ 1 + ϵ. We show

exponential upper tail bounds for the size of the largest component in such a graph,

uniformly as N → ∞. Precisely, we will show the following result.

THEOREM 3.9. Fix 0 < η < ∞ and then ϵ ∈ (0, η4

8 ∧ 1
2). Then there exist N0 =

N0(ϵ, η) ∈ N and constants χ = χ(ϵ, η) < ∞ and Γ = Γ(ϵ, η) > 0, such that for any

N ≥ N0 and given

• a kernel κ ∈ [η, ∞)k×k;

• a vector p ∈ Nk such that ∑ pi = N and pi/N ≥ η for each i;

• the eigenvalue condition ρ(κ ◦ p/N) ≤ 1 + ϵ is satisfied;

the following holds. For |C(v)| the size of the component of a uniformly-chosen vertex

in GN (p, κ),

P(|C(v)| ≥ χN) ≤ exp(−NΓ).

As ϵ → 0 with η fixed, we may choose the constants such that χ(ϵ, η) → 0.

Corollary 3.10. If L1(G) is the size of the largest component in a graph G satisfying

these same conditions, then

P
(
L1(GN (p, κ)) ≥ χN

)
≤ exp(−NΓ),

for large enough N .

The proof of Theorem 3.9 occupies the rest of this section.

Note. As Theorem 1.4 of [33], Janson and Riordan show exponential bounds in prob-

ability for the size of the largest component when κ is fixed and p/N converges to a

fixed π ∈ Π1. An argument along the lines of Lemma 3.12 below can be used to lift this

statement to the uniformity we require here.

We will present a different proof, using a multitype exploration process that is, to the

best of our knowledge, novel.
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Note. In the setting of the original Erdős–Rényi model, O’Connell [56] proves a stronger

result, namely that the size of the largest component of G(N, c/N) satisfies a large

deviation principle with rate N , and positive rate function away from ζc. The argument

involves a careful direct calculation. Such an argument is hard to reproduce in the

multitype setting because the probability of forming a component depends on the

number of edges between vertices of each pair of types.

3.2.1 Technical preliminaries - positive matrices and eigenvectors

We summarise the results we will require about positive matrices here. Their proofs are

given in Section 3.4.

THEOREM (Collatz–Wielandt formula [17, 70]). Given A ∈ Rk×k
≥0 ,

let f(x) := min1≤i≤n
xi ̸=0

[xA]i
xi

. Then

ρ(A) = max
x∈Rk

≥0\{0}
f(x). (3.3)

Corollary 3.11. The Perron root ρ is non-decreasing as a function of Rk×k
+ and satisfies

min
i∈[k]

k∑
j=1

Ai,j ≤ ρ(A) ≤ max
i∈[k]

k∑
j=1

Ai,j . (3.4)

In Chapter 5, we will need to consider limits uniformly among all measure-kernel pairs

with a given Perron root. The following compactification lemma shows that sometimes

we may reduce the problem to checking a finite number of measure-kernel pairs with a

different Perron root.

Lemma 3.12. For any 0 < Λ̄ < Λ, and K < ∞ there exist M ∈ N, and π(1), . . . , π(M) ∈

Π≤1 and kernels κ(1), . . . , κ(M) ∈ Rk×k
≥0 such that

• ρ(κ(m) ◦ π(m)) = Λ̄ for each m ∈ [M ],

• for any π ∈ Π≤1 and kernel κ ∈ [0, K]k×k with ρ(κ◦π) ≥ Λ, there is some m ∈ [M ]

for which π(m) ≤ π and κ(m) ≤ κ. (Recall that for both vectors and matrices, the

ordering ≤ is taken coordinate-wise.)
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Remark. The condition κmax ≤ K is necessary. Otherwise, consider

κi,j =


L i = j = 1

1
L otherwise,

π =
(Λ

L
, . . . ,

Λ
L

)
,

and allow L → ∞.

Recall that µ(A), ν(A) are the principal left- and right-eigenvectors respectively of a

positive matrix A, normalised such that ∑k
i=1 µi(A) = ∑k

i=1 νi(A) = 1. We will also

work with Π≤1 ∩ [η, 1]k, the set of sub-distributions where every component is at least η.

Proposition 3.13. Fix 0 < η < T < ∞. Then,

lim
R→∞

sup
π∈Π≤1∩[η,1]k

κ∈[η,T ]k×k

sup
v∈Π1

∣∣∣∣∣
∣∣∣∣∣ v(κ ◦ π)R

||v(κ ◦ π)R||1
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣
1

= 0. (3.5)

Remark. Since v(κ◦π)R

||v(κ◦π)R||1 is invariant under non-zero scalar multiplication of v, we

could alternatively take a supremum over v ∈ Rk
≥0\{0}, in the statement (3.5).

Remark. The non-uniform version of (3.5) is due to Perron [57], and a related limiting

matrix is often called the Perron projection. Related results appear in the multitype

branching process literature, including [36], for which [9] offers a comprehensive summary.

We will require a stronger version of Proposition 3.13, for large products of matrices

close to a fixed matrix. For A ∈ Rk×k
+ , and θ > 0, define

Bθ(A) := {B ∈ Rk×k
+ : |Bi,j − Ai,j | ≤ θ, ∀i, j ∈ [k]}, (3.6)

the set of positive kernels whose entries differ from those of A by at most θ.

Lemma 3.14. For all 0 < η < T < ∞ with η < 1, and δ > 0, there exist θ =

θ(δ, η, T ) ∈ (0, η2) and R = R(δ, η, T ) < ∞ such that

∣∣∣∣∣
∣∣∣∣∣ vD(1) . . . D(R)

||vD(1) . . . D(R)||1
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣
1

< δ, (3.7)

for all v ∈ Rk
≥0\{0}, κ ∈ [η, T ]k×k, π ∈ Π≤1 ∩ [η, 1]k, and D(1), . . . , D(R) ∈ Bθ(κ ◦ π).
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In later chapters, we require a local Lipschitz result for µ.

Lemma 3.15. Let A be a compact subset of Rk×k
≥0 with the property that for any A ∈ A,

the Perron root ρ(A) is a simple eigenvalue. Then there exists a constant C(A) < ∞

such that, for all matrices A, A′ ∈ A,

||µ(A) − µ(A′)||1 ≤ C(A) max
i,j∈[k]

|Ai,j − A′
i,j |. (3.8)

In particular, for any 0 < η < T < ∞, there exists C(η, T ) < ∞ such that, for all

matrices A, A′ ∈ [η, T ]k×k,

||µ(A) − µ(A′)||1 ≤ C(η, T ) max
i,j∈[k]

|Ai,j − A′
i,j |. (3.9)

3.2.2 A multitype exploration process

In Section 1.2.1, we saw how an exploration process could be used to encode the sizes

of components in a graph. This is particularly useful in G(N, p), since the exploration

process is Markov, and its increments can be characterised with binomial distributions,

as in (1.17).

We will encode the sizes and type counts of components in an inhomogeneous random

graph via a similar exploration process. In this setting, we must also track the types of

the vertices as we explore. Thus our multitype exploration process will be Zk-valued.

In Section 1.2.1, we discussed classical orderings, for example when the next vertex for

exploration is chosen in a depth-first manner. This enables us to recover the genealogy

of the component. The calculations which follow are valid for any (non-look-ahead)

ordering, but it is most natural in the multitype setting to choose the next vertex

for exploration uniformly at random from the candidate vertices at each stage, as the

resulting process will then be Markov. For readability, we recall the full definition.

Definition 3.16. Given a graph G with k types, we define the following multitype explo-

ration process. We choose v1 uniformly from V (G), and set Z0 := {v1}. Then, for each

m ≥ 1 in turn, we choose vm+1 uniformly from Zm := Γ(v1) ∪ . . . ∪ Γ(vm)\{v1, . . . , vm},

unless Zm = ∅, in which case we choose vm+1 uniformly from V (G)\{v1, . . . , vm}.
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We now define Zm, Rm ∈ Zk
≥0 to be the counts of types in Zm and {v1, . . . , vm}

respectively. That is:

Zm
i := #{v ∈ Zm : type(v) = i}, m ≥ 0, i ∈ [k],

Rm
i := #{v ∈ {v1, . . . , vm} : type(v) = i}, m ≥ 0, i ∈ [k].

In particular, we know that the size of the component containing v1 is given by

|C(v1)| = τ(Z) := inf{m ≥ 1 : Zm = 0}.

We now return to the case where the graph is distributed as GN (p, κ). Then (Zm, Rm)m≥0

is Markov since we can define the transitions as follows for any m ∈ {0, 1, . . . , N − 1}.

• If Zm = 0, then Zm = ∅, and so vm+1 is chosen uniformly from the remaining

vertices, independently of the history of the process. Conditional on Rm, for each

i ∈ [k], with probability pi−Rm
i

N−m , vm+1 has type i, and on this event,

Rm+1 = Rm + e(i), Zm+1
j

d= Bin
(
pj − Rm+1

j , 1 − e−κi,j/N
)
, j ∈ [k], (3.10)

where e(i) is the ith unit vector.

• If Zm ≠ 0, then vm+1 is chosen uniformly from Zm. Conditional on (Zm, Rm), for

each i ∈ [k], with probability Zm
i

||Zm||1 , vm+1 has type i, and, on this event,

Rm+1 = Rm + e(i),

Zm+1
j − Zm

j + δi,j
d= Bin

(
pj − Rm

j − Zm
j , 1 − e−κi,j/N

)
, j ∈ [k]. (3.11)

Comparison with the multitype branching process

First we need to define an alternative version of the multitype branching process which

is never empty.
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Definition 3.17. Given κ ∈ Rk×k
≥0 and π ∈ Π≤1\{0}, we define Ξ̄π,κ to be a random

multitype tree with the same distribution as Ξπ,κ conditional on ∅ ∈ Ξπ,κ. ∅ is the

root of the Ulam–Harris tree U, which supports Ξπ,κ. This condition is equivalent to

Ξπ,κ ̸= ∅. Then Ξ̄π,κ can be constructed by taking the type of the root to be given by

distribution π
||π||1 , and thereafter using the same offspring distributions as for Ξπ,κ. It

follows immediately that when π ∈ Π1, the distributions of Ξπ,κ and Ξ̄π,κ coincide.

In Chapter 5, we will want to compare the size of the component of a uniformly-chosen

vertex v in GN (p, κ), and |Ξ̄p/N,κ|, the size of the corresponding multitype branching

process. The following result couples these two objects via their multitype exploration

processes. Note that this approach is not original. For example, Bollobás, Janson and

Riordan use a similar approach in their proof of Lemma 9.6 [15], where instead they

compare to |Ξ̄p/N,(1+ϵ)κ|.

Proposition 3.18. Let N ∈ N, p ∈ Nk
0, and κ ∈ Rk×k

≥0 , and let |C(v)| be the size of the

component of a uniformly-chosen vertex in GN (p, κ). Then

|C(v)| ≤st |Ξ̄p/N,κ|. (3.12)

Proof. For brevity, we write π = p/N and Ξ̄ for Ξ̄π,κ during this proof. We show that

there exists a coupling of C(v) and its exploration process (Zm)m≥0 with Ξ̄ and an

exploration process (Z̄m)m≥0 of Ξ̄, such that Z̄m ≥ Zm for m ≤ τ(Z). We prove this

by induction on m ≥ 0.

Clearly we can couple C(v) and Ξ̄ such that the type of v and the type of the root of Ξ̄

are the same. (Note that, unlike Ξ, Ξ̄ has a root with probability 1.) Then Z̄1
j is the

number of children of the root of Ξ̄ with type j. If v and the root have type i, then

Z̄1
j

d= Po(κi,jπj). By comparing the probability that each is equal to zero, it is easily

seen that

Z̄1
j ≥st Bin

(
pj , 1 − e−κi,j/N

) (3.10)
≥st Z1

j .

Therefore, Z̄1 ≥st Z1.



98 Large components in inhomogeneous random graphs

Suppose that v1, . . . , vm and v̄1, . . . , v̄m are the initial vertices in the explorations of

C(v) and Ξ̄ respectively, and assume that Z̄m ≥ Zm. Then if vm+1 is chosen with type

i, there exists a v̄ ∈ Γ(v̄1) ∪ . . . ∪ Γ(v̄m)\{v̄1, . . . , v̄m} in Ξ̄ with type i by assumption,

so take this to be v̄m+1. Then

Z̄m+1
j − Z̄m

j + δi,j
d= Po(κi,jπj).

This stochastically dominates Bin
(
pj , 1 − e−κi,j/N

)
, and thus from (3.11)

Z̄m+1 − Z̄m ≥st Zm+1 − Zm.

So by induction we obtain Z̄m ≥ Zm for m ≤ τ(Z), and thus τ(Z̄) ≥ τ(Z), and the

result follows.

Remark. If instead we take v to be chosen uniformly from [N ], rather than from

V (GN (p, κ)) = [∑ pi], then (3.12) would hold with Ξ instead of Ξ̄, with an almost-

identical argument.

A remark about limits of Z

Given π ∈ Π1, and κ ∈ Rk×k
≥0 , consider the following coupled differential equations for

Rk-valued processes ((r(t), z(t)), t ≥ 0):

r(0) = z(0) = 0,

ṙ(0) = µ(κ ◦ π), ż(0) = (1 − ρ(κ ◦ π))µ(κ ◦ π),

ṙ(t) = z(t)
||z(t)||1

, ż(t) = − z(t)
||z(t)||1

+ z(t)
||z(t)||1

(κ ◦ (π − r(t) − z(t))), t > 0. (3.13)

When ρ(κ ◦ π) > 1, we conjecture that there exists T = T (κ, π) > 0, such that there

exists a unique solution to (3.13) on [0, T ), such that

z(t) > 0, t ∈ (0, t), lim
t→T

z(t) = 0.
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When the size of the graph N is large, and p/N ≈ π, we expect the rescaled multitype

exploration process ( 1
N Z⌊tN⌋, t ∈ [0, T ]) to be well-approximated by (z(t), t ∈ [0, T ]).

We will not prove an exact convergence result of this type here, which would lead to

an alternative expression for the size and type-measure of the largest component in a

supercritical IRG.

3.2.3 Proof of Theorem 3.9

We will study the multitype exploration process separately on two time intervals. In the

first regime, the process is growing, and we find upper bounds on how far it can grow.

In the second regime, irrespective of what has happened during the first time interval,

we can bound the process above by a related decreasing process. In both cases, since

the process is vector-valued, we will consider the projections of Z in a fixed direction,

which will be given by a principal eigenvector. We reduce the problem to a bound on

the probability that a large sum of ‘almost IID’ random variables substantially exceeds

its mean.

We start with the following lemma, which gives uniform control on the proportion of

vertices (across all types) that need to be removed from an inhomogeneous random

graph with eigenvalue (1 + ϵ) to give a graph with eigenvalue at most (1 − ϵ). We will

use this to divide our analysis into two regimes.

Lemma 3.19. Fix η > 0, and set θ(η) := η4

8 . Then there exists a function c : (0, θ(η)) →

(0, η/2] such that:

• for all ϵ ∈ (0, θ(η)), whenever we take π ∈ Π≤1 satisfying πi ≥ η for all i ∈ [k],

and κ ∈ [η, ∞)k×k such that ρ(κ ◦ π) ≤ 1 + ϵ, then for any π′ ∈ Π≤1 satisfying

π′ ≤ π, and ||π − π′||1 ≥ c(ϵ),

we have ρ(κ ◦ π′) ≤ 1 − ϵ;

• as ϵ → 0, c(ϵ) → 0.
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Remark. The proof, which is postponed until Section 3.4, shows that c(ϵ) = 4ϵ
η3 satisfies

these conditions.

Proof of Theorem 3.9. Within this proof, we take π := p
N . The proof proceeds by first

bounding ||Z⌈c(ϵ)N⌉||1 exponentially in probability, where c(ϵ) is as given by Lemma 3.19.

We achieve this by considering the projection onto the principal right-eigenvector of κ◦π.

Thereafter, the evolution is controlled by matrices with eigenvalue at most 1 − ϵ. We

bound this process above, stochastically, at least until it first hits zero, from which we will

obtain our estimate on the component size, using a similar projection-onto-eigenvector

decomposition.

During the first half of this proof, for brevity we write ρ for ρ(κ ◦ π), and ν for the

right-eigenvector ν(κ ◦ π). Now, let (Zm, Rm) be the multitype exploration process of

GN (p, κ) as defined in Section 3.2.2, and let F = (Fm) be its natural filtration. For

m ≥ 0, define Sm := Zm · ν to be the magnitude of the projection of the Nk
0-valued

exploration process onto the span of this eigenvector. Then, when it is not at zero, the

evolution of Sm follows from (3.11). For each i ∈ [k], let Am
i be the event that vm+1

has type i, which, conditional on Fm, occurs with probability Zm
i

||Zm||1 , whenever Zm is

not zero.

We will slightly abuse notation by writing E
[
Sm+1 − Sm

∣∣Fm,Am
i

]
for

E
[(

Sm+1 − Sm
)
1Am

i

∣∣Fm
]

Zm
i

||Zm||1

.

That is, conditioning on the sigma-algebra Fm, and the event Am
i .

As motivation, we consider the conditional expected increments of (Sm). For each

i ∈ [k], from (3.10) and (3.11),

E
[
Sm+1 − Sm

∣∣Fm,Ai
m

]
≤ −νi1{Zm ̸=0} +

∑
j∈[k]

νjpj(1 − e−κi,j/N )

≤ −νi1{Zm ̸=0} +
∑

j∈[k]
κi,jπjνj = νi(ρ − 1{Zm ̸=0})

≤ ρ − 1{Zm ̸=0} ≤ ϵ + 1{Zm=0}. (3.14)
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We will shortly use a Chernoff bound, so we need to estimate the conditional MGF of

the increments as well. First, we choose λ > 0 small enough that eλ − 1 ≤ (1 + ϵ
2)λ. By

convexity, it follows at once that

eλα − 1 ≤
(
1 + ϵ

2
)
λα, ∀α ∈ [0, 1]. (3.15)

We now bound the MGFs of the increments of Sm. Since we are only interested in the

exploration process until the first time it hits zero, we do not include the case (3.10) in

the subsequent calculation. To this end, we let τ(Z) := min{m : Zm = 0}. Naturally,

τ(Z) is an F-stopping time. We consider the process
(
Sm∧τ(Z)

)
m≥0

, that is S absorbed

at zero. Then,

E
[
exp(λ(S(m+1)∧τ(Z) − Sm∧τ(Z)))

∣∣Fm,Am
i

]
≤ 1{τ(Z)≤m} + 1{τ(Z)>m}e−λνi

∏
j∈[k]

[
1 + (1 − e−κi,j/N )(eλνj − 1)

]pj

≤ 1{τ(Z)≤m} + 1{τ(Z)>m}e−λνi
∏

j∈[k]

[
1 + (1 + ϵ

2) · κi,j

N λνj
]pj , (3.16)

using (3.15) and the bound 1 − exp(−x) ≤ x. From this, using log(1 + x) ≤ x,

log
(
E
[
exp

(
λ(S(m+1)∧τ(Z) − Sm∧τ(Z))

) ∣∣Fm,Am
i

])
≤ 1{τ(Z)>m}

−λνi +
∑

j∈[k]
pj
(
1 + ϵ

2
)

· κi,j

N λνj


≤ 1{τ(Z)>m}

−λνi +
∑

j∈[k]
κi,jπj

(
1 + ϵ

2
)
λνj


≤ 1{τ(Z)>m}λνi

(
−1 +

(
1 + ϵ

2
)
ρ
)

≤ λ
(
−1 +

(
1 + ϵ

2
)
(1 + ϵ)

)
, (3.17)

since νi ≤ 1. Now the RHS of (3.17) has no dependence on i. After iterated application

of the tower law, we obtain

log
(
E
[
exp

(
λ(Sm∧τ(Z) − S0)

)])
≤ λm

(
−1 +

(
1 + ϵ

2
)
(1 + ϵ)

)
.
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Then, applying Markov’s inequality in the usual way, we find

logP(Sm ≥ 2ϵm, τ(Z) ≥ m) ≤ logP
(
Sm∧τ(Z) − S0 ≥ 2ϵm − 1

)
≤ logE

[
exp

(
λ
(
Sm∧τ(Z) − S0

))]
− λ(2ϵm − 1)

≤ λm
[
−1 +

(
1 + ϵ

2
)
(1 + ϵ) − 2ϵ

]
+ λ. (3.18)

Recall the definition of c(ϵ) from Lemma 3.19. Observe that λ
(
2ϵ + 1 −

(
1 + ϵ

2
)
(1 + ϵ)

)
>

0 since we demanded ϵ < 1
2 , and λ depends only on ϵ. So take any 0 < γ = γ(ϵ) <

λ
(
2ϵ + 1 −

(
1 + ϵ

2
)
(1 + ϵ)

)
. Then there exists N0 = N0(ϵ) ∈ N such that, taking

m = ⌈c(ϵ)N⌉ in (3.18), we have for all N ≥ N0,

P
(
S⌈c(ϵ)N⌉ ≥ 2ϵc(ϵ)N, τ(Z) ≥ c(ϵ)N

)
≤ exp(−c(ϵ)γN). (3.19)

Finally, we convert this into a probabilistic statement about ||Z⌈c(ϵ)N⌉||1. Observe that

νi = 1
ρ(κ ◦ π)

k∑
j=1

κi,jπjνj ≥ 1
1 + ϵ

min
j∈[k]

κi,jπj ≥ η2

1 + ϵ
≥ η2

2 . (3.20)

Then, for any m ≥ 0, ||Zm||1 ≤ Sm/ mini νi, and so on the event {τ(Z) ≥ m},

||Zm||1 ≤ Sm∧τ(Z)/ mini νi. So, from (3.19), we conclude

P
(
||Z⌈c(ϵ)N⌉||1 ≥ 4ϵη−2c(ϵ)N, τ(Z) ≥ c(ϵ)N

)
≤ exp(−c(ϵ)γN), (3.21)

for N ≥ N0.

Now we consider the evolution beyond time c(ϵ)N . We define

p′
i = pi − R

⌈c(ϵ)N⌉
i , π′

i = p′
i/N, i ∈ [k].

Since ||R⌈c(ϵ)N⌉||1 = ⌈c(ϵ)N⌉, we have ||π − π′|| ≥ c(ϵ). Using this, and the fact that

ρ(κ ◦ π) ≤ 1 + ϵ, we know from Lemma 3.19 that ρ′ := ρ(κ ◦ π′) ≤ 1 − ϵ almost surely.

Recall that πi ≥ η ≥ 2c(ϵ), and so to avoid errors from the ceiling function, we assume
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throughout that N is large enough that π′
i ≥ η/3, for all i ∈ [k]. We may consider ν ′,

the principal right-eigenvector of κ ◦ π′, normalised so that ||ν ′||1 = 1.

For m ≥ ⌈c(ϵ)N⌉, define S′m := Zm · ν ′ to be the magnitude of the projection of Z onto

this (random) eigenvector ν ′. As before, S′m is adapted to F and, when it is not at

zero, the distribution of the increments of S′m follows directly from (3.11). Since ν ′ is

F⌈c(ϵ)N⌉-measurable, we can repeat the calculation (3.16), for m ≥ ⌈c(ϵ)N⌉.

E
[
exp(λ(S′(m+1) − S′m))

∣∣Fm,Am
i

]
≤ 1{τ(Z)≤m} + 1{τ(Z)>m}e−λν′

i

∏
j∈[k]

[
1 + (1 − e−κi,j/N )(eλν′

j − 1)
]p′

j
.

Then,

log
(
E
[
exp(λ(S′(m+1) − Sm))

∣∣Fm,Am
i

])
≤ 1{τ(Z)>m}λν ′

i

(
−1 +

(
1 + ϵ

2
)
ρ′).

By the same argument as (3.20), since ρ′ ≤ 1 − ϵ and π′
i ≥ η/3 for all i ∈ [k], we obtain

ν ′
i ≥ η2/3. Recall also that ϵ ∈ (0, 1

2), and so

(1 + ϵ
2)ρ′ ≤ (1 + ϵ

2)(1 − ϵ) < 1 − ϵ

2 .

Therefore,

log
(
E
[
exp(λ(S′m+1 − S′m))

∣∣Fm,Am
i

])
≤ −λ1{τ(Z)>m}

ϵη2

6 . (3.22)

With the aim of avoiding the requirement to carry this indicator function through the

tower law, we define τ ′(Z) = τ(Z) ∧ ⌈c(ϵ)N⌉, and then for m ≥ ⌈c(ϵ)N⌉,

S̄m := S′m − ϵη2

6
((

m − τ ′(Z)
)

∨ 0
)
. (3.23)

That is, S̄⌈c(ϵ)N⌉ = S′⌈c(ϵ)N⌉, and then S̄ follows S′ if Z has not yet hit zero. But if

Z has already hit zero, or when it hits zero after ⌈c(ϵ)N⌉, the increments of S̄ are
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deterministic and fixed (and negative). We can then rewrite (3.22) in terms of S̄m as

log
(
E
[
exp(λ(S̄m+1 − S̄m))

∣∣Fm,Am
i

])
≤ −λ

ϵη2

6 . (3.24)

Since the RHS of (3.24) has no dependence on i nor Fm, we apply the tower law to

obtain

log
(
E
[
exp(λ(S̄⌈c(ϵ)N⌉+m − S̄⌈c(ϵ)N⌉))

∣∣F⌈c(ϵ)N⌉
])

≤ −λm
ϵη2

6 . (3.25)

Then, taking m = 36η−4⌈c(ϵ)N⌉, and applying Markov’s inequality again, we find

logP
(
S̄⌈c(ϵ)N⌉+36η−4⌈c(ϵ)N⌉ − S̄⌈c(ϵ)N⌉ ≥ −4ϵη−2c(ϵ)N

)
≤ −λ · 36η−4c(ϵ)N · ϵη2

6 + λ · 4ϵη−2c(ϵ)N

≤ −2λϵη−2c(ϵ)N.

Finally, by patching together Sm∧τ(Z) and S̄m, we can now address the probability that

τ(Z) is large.

P
(
τ(Z) ≥ ⌈c(ϵ)N⌉ + 36η−4⌈c(ϵ)N⌉

)
≤ P

(
S̄⌈c(ϵ)N⌉+36η−4⌈c(ϵ)N⌉ ≥ 0, τ(Z) ≥ c(ϵ)N

)
≤ P

(
S̄⌈c(ϵ)N⌉ ≥ 4ϵη−2c(ϵ)N, τ(Z) ≥ c(ϵ)N

)
+ P

(
S̄⌈c(ϵ)N⌉+36η−4⌈c(ϵ)N⌉ − S̄⌈c(ϵ)N⌉ ≥ −4ϵη−2c(ϵ)N

)
≤ P

(
||Z⌈c(ϵ)N⌉||1 ≥ 4ϵη−2c(ϵ)N, τ(Z) ≥ c(ϵ)N

)
+ P

(
S̄⌈c(ϵ)N⌉+36η−4⌈c(ϵ)N⌉ − S̄⌈c(ϵ)N⌉ ≥ −4ϵη−2c(ϵ)N

)
(3.19)

≤ exp(−c(ϵ)γN) + exp
(
−2λϵη−2c(ϵ)N

)
, (3.26)

for N large enough. We therefore take χ(ϵ) :=
(
1 + 36η−4)c(ϵ), and observe that

since c(ϵ) → 0 as ϵ → 0, we also have χ(ϵ) → 0. Finally, choose positive Γ <

min
(
c(ϵ)γ, 2λϵη−2c(ϵ)

)
, and recalling that τ(Z) d= |C(v1)|, the statement of Theorem

3.9 follows.
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3.3 Distribution of types in large components

For the purpose of the frozen percolation model to follow in Chapter 5, we require a

result about the proportion of types in all large components; that is, not just the giant

component (if it exists). We will approach this by considering the types of vertices

connected at large distance from a uniformly-chosen vertex. For many choices of the root

vertex there will be no vertices at large radius. But for large components, the majority

of the vertices in such components will be a large distance from a uniformly-chosen

vertex.

For any graph G with k types on N vertices, we will take v to be a uniformly-chosen

vertex. Then, for r = 0, 1, . . . , N − 1, define W r ∈ Nk
0 by,

W r
i := #{type i vertices distance r from v}, i ∈ [k],

and W ≥R
i := ∑N−1

r=R W r
i .

Remark. Throughout the literature, Z is often used to denote Galton–Watson and

related processes. To avoid confusion, we reserve Z for reflected exploration processes

in this thesis.

THEOREM 3.20. Fix constants 0 < η < T < ∞. Now, for any δ > 0, there exists

ϵ = ϵ(δ, η, T ) > 0, and R = R(δ, η, T ), N0 = N0(δ, η, T ) ∈ N satisfying the following.

Consider any κ ∈ [η, T ]k×k and p ∈ Nk
0 satisfying ∑ pi = N ≥ N0 and pi ≥ ηN , with

ρ(κ ◦ p
N ) ≤ 1 + ϵ. Then W ≥R corresponding to v, a uniformly-chosen vertex in GN (p, κ)

satisfies ∣∣∣∣∣∣E[W ≥R
]

− µ(κ ◦ π)||E
[
W ≥R

]
||1
∣∣∣∣∣∣

1
≤ δ

∣∣∣∣∣∣E[W ≥R
]∣∣∣∣∣∣

1
. (3.27)

Furthermore, recall the definition of χ = χ(ϵ, η) from Theorem 3.9. Define the event

Aχ := {||W ≥R||1 ≤ χN}, that the component containing v has size at most χN beyond

radius R. Then we also have a constant N1 = N1(δ, η, T ) such that whenever N ≥ N1,

∣∣∣∣∣∣E[W ≥R1Aχ

]
− µ(κ ◦ π)||E

[
W ≥R1Aχ

]
||1
∣∣∣∣∣∣

1
≤ δ

∣∣∣∣∣∣E[W ≥R1Aχ

]∣∣∣∣∣∣
1
. (3.28)
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Remark. Neither the statements nor the proofs consider the value, or even the scale

of
∣∣∣∣∣∣E[W ≥R

]∣∣∣∣∣∣
1
. The results (3.27) and (3.28) deal only with the direction of E

[
W ≥R

]
,

since they hold uniformly over ρ ≤ 1 + ϵ, which includes subcritical, critical and

supercritical regimes. That is, for ρ = 1 + ϵ,
∣∣∣∣∣∣E[W ≥R

]∣∣∣∣∣∣
1

= Θ(N) for any fixed R,

whereas for fixed ρ < 1,
∣∣∣∣∣∣E[W ≥R

]∣∣∣∣∣∣
1

= Θ(1) as N → ∞.

3.3.1 Convex combinations of matrix products

We begin with a further technical lemma. We show that convex combinations of matrices

close to a fixed matrix can be written as a single matrix close to that fixed matrix.

Such matrices will appear as expected multiplicative increments for a discrete-time

process, and this lemma allows us the control the increments across multiple time-steps.

We will also use Lemma 3.14 which asserts that applying a large enough product of

matrices close to a fixed positive matrix to any vector has direction close to the principal

eigenvector of the fixed matrix.

The combination of these results allows us to control the expected proportion of types at

some large radius from a fixed vertex in an inhomogeneous random graph, irrespective of

the expected number of vertices at this radius. Considering all distances from the fixed

vertex simultaneously proves the required concentration result for the proportion of

types in a typical large component, and all the estimates hold uniformly among graphs

with bounded Perron root.

Recall the definition (3.6)

Bθ(A) := {B ∈ Rk×k
+ : |Bi,j − Ai,j | ≤ θ, ∀i, j ∈ [k]},

of the set of positive kernels whose entries differ from those of A by at most θ.

Lemma 3.21. Given A ∈ Rk×k
+ , L ∈ N, and θ > 0 such that mini,j Ai,j > θ, consider

non-negative non-zero vectors x(1), . . . , x(L) ∈ Rk
≥0\{0}, and any L matrices

D(1), . . . , D(L) ∈ Bθ(A),
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and positive real numbers p1, . . . , pL satisfying
L∑

ℓ=1
pℓ = 1. Then there exists a matrix

D̄ ∈ Bθ(A) such that

p1x(1)D(1) + . . . + pLx(L)D(L) = (p1x(1) + . . . + pLx(L))D̄. (3.29)

Proof. Let 1 be the k ×k matrix where every entry is 1. Since the x(i)s are non-negative,

and each D(l) ∈ Bθ(A),

p1x(1)D(1) + . . . + pLx(L)D(L) ≤ p1x(1)(A + θ1) + . . . + pLx(L)(A + θ1)

≤ (p1x(1) + . . . + pLx(L))(A + θ1).

Similarly,

p1x(1)D(1) + . . . + pLx(L)D(L) ≥ (p1x(1) + . . . + pLx(L))(A − θ1).

For ease of notation, set y := p1x(1)D(1) + . . .+pLx(L)D(L) and z := p1x(1) + . . .+pLx(L),

so

z(A − θ1) ≤ y ≤ z(A + θ1). (3.30)

Now, for each j ∈ [k], set cj := yj−[zA]j
||z||1 , so that ∑k

i=1 zi(Ai,j + cj) = yj . Since the LHS

is increasing in cj , from (3.30) we have |cj | ≤ θ.

So we may define D̄ ∈ Bθ(A) via D̄i,j = Ai,j + cj , and this satisfies (3.29).

3.3.2 Proof of Theorem 3.20

Proof. We may insist T > 2, and first choose any ϵ ∈ (0, η4

8 ∧ 1
2) small enough that

χ(ϵ, η) as defined in Theorem 3.9 and θ(δ, η, T ) as defined in Lemma 3.14 satisfy

χ(ϵ, η)T 2 ≤ θ(δ, η, T ) < η2. (3.31)

(Recall we require this restriction on the range of ϵ to apply Theorem 3.9.)
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Assume throughout that we have a graph GN (p, κ) satisfying the conditions of the

statement. For each j ∈ [k], conditional on (W 0, W 1, . . . , W r), W r+1
j has distribution

Bin
(
pj − (W 0 + W 1 + . . . + W r)j , 1 − e−(W rκ)j/N

)
. (3.32)

The first parameter is the number of type j vertices in the graph that are not within

distance r from v. For each of these vertices independently, the probability that it is

connected to none of the vertices at distance r from v is ∏k
i=1(e−κi,j/N )W r

i = e−(W rκ)j/N .

So,

E
[
W r+1

j

∣∣W 0, . . . , W r
]

=
[
pj − (W 0 + W 1 + . . . + W r)j

]
·
(
1 − e−(W rκ)j/N

)
=
[
πj − (W 0 + . . . + W r)j

N

]
· N
(
1 − e−(W rκ)j/N

)
≤ πj [W rκ]j = [W r(κ ◦ π)]j .

And so we conclude that

E
[
W r+1 ∣∣W 0, . . . , W r

]
≤ W r(κ ◦ π). (3.33)

Define the matrix D(r) ∈ Rk×k by

D
(r)
i,j = (κ ◦ π)i,j − 1

||W r||1

[
W r(κ ◦ π) − E

[
W r+1 ∣∣W 0, . . . , W r

]]
j
.

So we may write this conditional expectation as

E
[
W r+1 | W 0, . . . , W r

]
= W rD(r). (3.34)

We define Sr := ||W 0 + . . . + W r||1 to be the total number of vertices within radius r

of the root and recall that x − x2/2 ≤ 1 − e−x for x ≥ 0. We can then derive a bound

in the opposite direction to (3.33):

E
[
W r+1

j

∣∣W 0, . . . , W r
]

≥
[
πj − Sr

N

](
[W rκ]j − ([W rκ]j)2

2N

)
.
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So, when Sr ≤ χN , and recalling κ ∈ [η, T ]k×k, we have

0 ≤
(
κ ◦ π − D(r)

)
i,j

≤ 1
||W r||1

[
Sr

N
[W rκ]j + πj

([W rκ]j)2

2N

]

0 ≤
(
κ ◦ π − D(r)

)
i,j

≤ χT + χT 2

2 ≤ χT 2 ≤ θ, (3.35)

for all i, j ∈ [k], from the assumptions (3.31) we made at the start of the proof.

Now fix some r between 0 and N − R − 1. We combine all of the previous ingredients

to show that E
[
W r+R

]
has direction within δ of µ(κ ◦ π). We first define a version of

the process W for which the matrices governing the expected one-step evolution of W

always lie within Bθ(κ ◦ π). We do this to show that the contributions from the rare

event {|C(v)| > χN} are negligible as N → ∞.

Let W̃ r = W r. Then, inductively, for m = 0, 1, . . . , R − 1, let

W̃ r+m+1 =


W r+m+1 if Sr+m ≤ χN

W̃ r+m(κ ◦ π) if Sr+m > χN.

(3.36)

That is, W̃ tracks W until the first time that S exceeds χN , and thereafter evolves

deterministically, with transitions given by right-multiplying by (κ ◦ π). Later we will

be particularly interested in W̃ r+R as r varies, so we let Y r := W̃ r+R. (Note that for

different values of r, (W̃ r+m)m≥0 are formally different processes.)

For m ≥ 0, define Fr+m := σ(W 0, . . . , W r+m). So, in particular

(W 0, W 1, . . . , W r, W̃ r+1, . . . , W̃ r+m)

is Fr+m-measurable. Because of (3.34) and (3.36), we have

E
[
W̃ r+m+1 ∣∣W 0, . . . , W r, W̃ r+1, . . . , W̃ r+m

]
= W̃ r+mD(r+m), (3.37)

where D(r+m) is Fr+m-measurable. On the Fr+m-measurable event {Sr+m > χN},

D(r+m) = κ ◦ π, and otherwise D(r+m) ∈ Bθ(κ ◦ π) from (3.35). Therefore D(r+m) ∈



110 Large components in inhomogeneous random graphs

Bθ(κ ◦ π) almost surely. We will now show that expected R-step transitions are given

by a product of R matrices in a similar way, using Lemma 3.21.

Claim: For any 1 ≤ m ≤ R, there exist Fr-measurable matrices D(1), . . . , D(m) ∈

Bθ(κ ◦ π) such that

E
[
W̃ r+m |Fr

]
= W rD(1) . . . D(m). (3.38)

We prove the claim by induction on m. Suppose the claim is true for a particular value

of m. Clearly supp
(
W̃ r+m

)
is finite, and for each w ∈ supp

(
W̃ r+m

)
by (3.37), we have

(after a superficial change of notation - recall r is currently fixed)

E
[
W̃ r+m+1 ∣∣W 0, . . . , W r, W̃ r+1, . . . , W̃ r+m−1, W̃ r+m = w

]
= wD̄(m+1),

where D̄(m+1) is Fr+m-measurable and in Bθ(κ ◦ π). So

E
[
W̃ r+m+1 ∣∣W 0, . . . , W r, W̃ r+m = w

]
= wE

[
D̄(m+1) ∣∣W 0, . . . , W r, W̃ r+m = w

]
.

The expectation on the RHS is a convex combination of elements of the convex set

Bθ(κ ◦ π). So D(m+1,w) := E
[
D̄(m+1) ∣∣W 0, . . . , W r, W̃ r+m = w

]
is Fr-measurable, and

is almost surely in Bθ(κ ◦ π).

We now apply the tower law:

E
[
W̃ r+m+1 |Fr

]
=

∑
w∈supp(W̃ r+m)

E
[
W̃ r+m+1 | W 0, . . . , W r, W̃ r+m = w

]
P
(
W̃ r+m = w

∣∣Fr

)

=
∑

w∈supp(W̃ r+m)
wD(m+1,w)P

(
W̃ r+m = w

∣∣Fr

)
.

So by Lemma 3.21, there exists an Fr-measurable matrix D(m+1) ∈ Bθ(κ ◦ π) such that

E
[
W̃ r+m+1 |Fr

]
=

 ∑
w∈supp(W̃ r+m)

wP
(
W̃ r+m = w

∣∣Fr

)D(m+1)

= E
[
W̃ r+m |Fr

]
D(m+1),
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a conditional version of (3.34). Then, using the assumed inductive hypothesis,

E
[
W̃ r+m+1 |Fr

]
= W rD(1) . . . D(m)D(m+1).

The claim (3.38) follows for all m ≤ R by induction. In particular, the case m = R gives

E
[
W̃ r+R |Fr

]
= W rD(1) . . . D(R). (3.39)

Since each D(m) ∈ Bθ(κ ◦ π), we now have precisely the conditions to use Lemma 3.14,

whenever W r ≠ 0. Fix δ > 0, also note that κ ◦ π ∈ [η2, T ]k×k by assumption. The

lemma specifies R = R(δ/2, η, T ) and we conclude that

∣∣∣∣∣∣E[W̃ r+R |Fr
]

− µ(κ ◦ π)||E[W̃ r+R |Fr]||1
∣∣∣∣∣∣

1
≤ δ

2
∣∣∣∣∣∣E[W̃ r+R |Fr

]∣∣∣∣∣∣
1
,

almost surely (including the trivial case W r = 0), and in particular,

∣∣∣∣∣∣E[W̃ r+R
]

− µ(κ ◦ π)||E[W̃ r+R]||1
∣∣∣∣∣∣

1
≤ δ

2
∣∣∣∣∣∣E[W̃ r+R

]∣∣∣∣∣∣
1
. (3.40)

Recall that r was fixed throughout, and Y r := W̃ r+R. In particular, if |C(v)| ≤ χN ,

then Y r = W r+R. Now we may sum (3.40) over r.

∣∣∣∣∣
∣∣∣∣∣E
[

N−R−1∑
r=0

Y r

]
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣E
[

N−R−1∑
m=0

Y r

]∣∣∣∣∣
∣∣∣∣∣
1

∣∣∣∣∣
∣∣∣∣∣
1

≤ δ

2

∣∣∣∣∣
∣∣∣∣∣E
[

N−R−1∑
r=0

Y r

]∣∣∣∣∣
∣∣∣∣∣
1
. (3.41)

By considering (3.39) in the case r = 0, we have

0 < (η2 − θ)R ≤ E
[
Y 0
]

≤
∣∣∣∣∣
∣∣∣∣∣E
[

N−R−1∑
r=0

Y r

]∣∣∣∣∣
∣∣∣∣∣
1
. (3.42)

We now deal with the case when |C(v)| > χN . By construction, we have the very crude

bound,

||W R + W R+1 + . . . + W N−1||1 ≤ N.
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Then, for each r, there are R + 1 possibilities for the value of Y r = W̃ r+R in terms of

W , depending on when Sr+m first exceeds χN , as given by (3.36). So we have another

crude bound,

Y r ≤ W r+R + W r+R−1(κ ◦ π) + . . . + W r(κ ◦ π)R,

since all of these quantities are non-negative. Furthermore, since all entries of κ ◦ π are

at most T , we obtain,

∣∣∣∣∣
∣∣∣∣∣
N−R−1∑

r=0
Y r

∣∣∣∣∣
∣∣∣∣∣
1

≤ (1 + (kT ) + . . . + (kT )R)N ≤ (kT )R+1N.

Therefore

∣∣∣∣∣
∣∣∣∣∣E
[

N−R−1∑
r=0

Y r

]
− E

[
N−1∑
r=R

W r

]∣∣∣∣∣
∣∣∣∣∣
1

≤
(
1 + (kT )R+1

)
NP(|C(v)| > χN). (3.43)

By Theorem 3.9 this RHS is, for large enough N , much smaller than all the terms in

(3.41) (recall from (3.42) that we have a positive lower bound on the RHS of (3.41)),

and so we may replace E
[∑N−R−1

r=0 Y r
]

with E
[∑N−1

r=R W r
]

to conclude

∣∣∣∣∣
∣∣∣∣∣E
[

N−1∑
r=R

W r

]
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣E
[

N−1∑
r=R

W r

]∣∣∣∣∣
∣∣∣∣∣
1

∣∣∣∣∣
∣∣∣∣∣
1

≤ δ

∣∣∣∣∣
∣∣∣∣∣E
[

N−1∑
r=R

W r

]∣∣∣∣∣
∣∣∣∣∣
1

, (3.44)

for N ≥ N0 = N0(δ, η, T ) ∈ N, as required for (3.27), since ∑N−1
r=R W r = W ≥R(v).

Recall that Aχ := {||C≥R(v)||1 ≤ χN} ⊆ {|C(v)| ≤ χN}. We may add 1Aχ to the

statements of (3.41) and (3.43), from which we obtain

∣∣∣∣∣
∣∣∣∣∣E
[
1Aχ

N−R−1∑
r=0

Y r

]
− E

[
1Aχ

N−1∑
r=R

W r

]∣∣∣∣∣
∣∣∣∣∣
1

≤
(
1 + (kT )R+1

)
NP(|C(v)| > χN).

So we can apply the same argument as for (3.44) to conclude (3.28).
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3.4 Proofs of technical lemmas

3.4.1 Proof of Lemma 3.12

We restate Lemma 3.12.

Lemma. For any 0 < Λ̄ < Λ, and K < ∞ there exist M ∈ N, and π(1), . . . , π(M) ∈ Π≤1

and kernels κ(1), . . . , κ(M) ∈ Rk×k
≥0 such that

• ρ(κ(m) ◦ π(m)) = Λ̄ for each m ∈ [M ],

• for any π ∈ Π≤1 and kernel κ ∈ [0, K]k×k with ρ(κ◦π) ≥ Λ, there is some m ∈ [M ]

for which π(m) ≤ π and κ(m) ≤ κ.

Proof. The result is clear when

A(K, Λ) :=
{

(κ, π) ∈ [0, K]k×k × Π≤1 : ρ(κ ◦ π) ≥ Λ
}

is either empty or consists of one measure-kernel pair.

Otherwise, we view ρ as a continuous function Rk×k
≥0 × Π≤1 → R≥0 via κ ◦ π, and so

A(K, Λ) is compact. Now, for any κ, κ0 ∈ Rk×k
≥0 , we say κ ◃ κ0 if for all i, j ∈ [k],


κi,j ≥ 0 when κ0

i,j = 0

κi,j > κ0
i,j when κ0

i,j > 0.

Then, for any κ0 ∈ Rk×k
≥0 , the set {κ ∈ Rk×k

≥0 : κ ◃ κ0}, is open in the subset topology

induced on Rk×k
≥0 . We also define the relation ◃ on Rk in an exactly equivalent fashion.

Now, for any (κ0, π0) ∈ [0, K]k×k × Π≤1, with ρ(κ0 ◦ π0) = Λ̄, the set

{
(κ, π) ∈ [0, K]k×k × Π≤1 : ρ(κ ◦ π) > Λ+Λ̄

2 , κ ◃ κ0, π ◃ π0
}

,

is open in [0, K]k×k × Π≤1, and so its restriction to A(K, Λ),

N(κ0, π0) :=
{

(κ, π) ∈ Rk×k
≥0 × Rk

≥0 : ρ(κ ◦ π) ≥ Λ, κ ◃ κ0, π ◃ π0
}

,
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is also open in the subset topology induced on A(K, Λ). But for any (κ, π) ∈ A(K, Λ),

with Λ′ = ρ(κ ◦ π), we have

ρ

(√
Λ̄
Λ′ κ ◦

√
Λ̄
Λ′ π

)
= Λ̄, and (κ, π) ∈ N

(√
Λ̄
Λ′ κ,

√
Λ̄
Λ′ π

)
.

Therefore, the sets N(κ0, π0) cover A(K, Λ). Thus there is a finite sub-cover given by

some N(κ(1), π(1)), . . ., N(κ(M), π(M)). Certainly if π ◃ π(m) and κ ◃ κ(m), then π ≥ π(m)

and κ ≥ κ(m), as required.

3.4.2 Proof of Proposition 3.13

For the next two results, we denote by Sk×k([η, T ]), the set of k × k symmetric matrices

with entries in [η, T ]. For A a real symmetric positive matrix, we let µ̄(A) be the

principal left-eigenvector of A, normalised so that ||µ̄(A)||2 = 1. We will work with µ̄(A)

in the following result, and convert the statement to the language of µ(A) (as defined

earlier) at the end.

We will also work with Π≤1 ∩ [η, 1]k, the set of sub-distributions where every component

is at least η.

Lemma 3.22. Fix 0 < η < T < ∞. Then,

lim
R→∞

sup
A∈Sk×k([η,T ])

sup
v∈Π≤1

∣∣∣∣∣
∣∣∣∣∣ vAR

ρ(A)R
− ⟨v, µ̄(A)⟩µ̄(A)

∣∣∣∣∣
∣∣∣∣∣
1

= 0. (3.45)

Proof. For a real positive symmetric matrix A, we define

Λ2(A) := sup{|λ| : λ an eigenvalue of A, λ ̸= ρ(A)},

to be the absolute value of the ‘second-largest’ eigenvalue of A, which is strictly less

than ρ(A). But ρ(A) and Λ2(A) are well-defined and continuous on the compact domain

Sk×k([η, T ]). This continuity can be shown by considering the characteristic polynomial

of A and applying standard results (see [72] and references therein) concerning the roots
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of monic polynomials under continuously varying the coefficients. Then

θ(η, T ) := sup
{Λ2(A)

ρ(A) : A ∈ Sk×k([η, T ])
}

< 1. (3.46)

Now, let {µ̄(A), µ(2)(A), . . . , µ(k)(A)} be a set of orthonormal eigenvectors of A, where

µ̄(A) corresponds to the Perron root ρ(A). As usual, any v ∈ Rk can be expressed as

v = ⟨v, µ̄(A)⟩µ̄(A) + ⟨v, µ(2)(A)⟩µ(2)(A) + . . . + ⟨v, µ(k)(A)⟩µ(k)(A),

and so

∣∣∣∣∣
∣∣∣∣∣ vAR

ρ(A)R
− ⟨v, µ̄(A)⟩µ̄(A)

∣∣∣∣∣
∣∣∣∣∣
1

≤ θ(η, T )R
k∑

i=2

∣∣∣⟨v, µ(i)(A)⟩
∣∣∣||µ(i)(A)||1.

But since v ∈ Π≤1, ∣∣∣⟨v, µ(i)(A)⟩
∣∣∣ ≤ ||µ(i)(A)||1 ≤

√
k,

by Cauchy–Schwarz, since ||µ(i)(A)||2 = 1. Therefore

∣∣∣∣∣
∣∣∣∣∣ vAR

ρ(A)R
− ⟨v, µ̄(A)⟩µ̄(A)

∣∣∣∣∣
∣∣∣∣∣
1

≤ θ(η, T )R · (k − 1)
√

k,

and the required result (3.45) follows.

We can now restate and prove Proposition 3.13.

Proposition. Fix 0 < η < T < ∞. Then,

lim
R→∞

sup
π∈Π≤1∩[η,1]k

κ∈[η,T ]k×k

sup
v∈Π1

∣∣∣∣∣
∣∣∣∣∣ v(κ ◦ π)R

||v(κ ◦ π)R||1
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣
1

= 0. (3.5)

Proof. Instead of considering κ ◦ π, we will study κ • π, defined for κ ∈ Rk×k, π ∈ Rk
+ by

[κ • π]i,j := √
πiκi,j

√
πj . (3.47)
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The matrix κ • π is real and symmetric, which makes a treatment of its spectrum easier.

First, we note that if v is any left-eigenvector of κ ◦ π, with eigenvalue λ, then

k∑
i=1

(
vi√
πi

)
[κ • π]i,j =

k∑
i=1

viκi,j
√

πj = λ
vj√
πj

.

That is (vi/
√

πi) is an eigenvector of κ • π, also with eigenvalue λ. Therefore the

spectrum of κ ◦ π is the same as the spectrum of κ • π. In particular, the Perron roots

of κ ◦ π and κ • π are the same, and µ(κ • π)i = Cµ(κ ◦ π)i/
√

πi, where C is a positive

constant chosen to ensure consistent normalisation.

But then

[v(κ ◦ π)R]j =
[(

v1√
π1

, . . . ,
vk√
πk

)
(κ • π)R

]
j

√
πj . (3.48)

Note that if v ∈ Π1, then ( v1√
π1

, . . . , vk√
πk

) ∈ Π≤η−1/2 , and certainly κ • π ∈ Sk×k([η2, T ]).

The statement (3.45) still holds after replacing the supremum over v ∈ Π≤1 with a

supremum over v ∈ Π≤η−1/2 . So we can treat the RHS of (3.48), since

∣∣∣∣∣
∣∣∣∣∣
(

v1√
π1

, . . . ,
vk√
πk

)
(κ • π)R

ρR
−
〈(

v1√
π1

, . . . ,
vk√
πk

)
, µ̄(κ • π)

〉
µ̄(κ • π)

∣∣∣∣∣
∣∣∣∣∣
1

→ 0,

as R → ∞, uniformly across the set of (π, κ) under consideration, and v ∈ Π1. Note

that for each j ∈ [k], we have √
πj ∈ [√η, 1]. Therefore, uniformly in the same sense,

v(κ ◦ π)R

ρR
→

〈(
v1√
π1

, . . . ,
vk√
πk

)
, µ̄(κ • π)

〉(
µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)
,

as R → ∞, and so also

∣∣∣∣∣
∣∣∣∣∣v(κ ◦ π)R

ρR

∣∣∣∣∣
∣∣∣∣∣
1

→
∣∣∣∣∣
∣∣∣∣∣
〈(

v1√
π1

, . . . ,
vk√
πk

)
, µ̄(κ • π)

〉(
µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)∣∣∣∣∣
∣∣∣∣∣
1
.

We want to show that this limiting quantity has a positive lower bound, so that we can

take a limit of the quotients v(κ◦π)R

||[v(κ◦π)R]||1 . We first note that from (3.4), ρ(κ • π) ≤ kT ,

since κ • π ∈ Sk×k([η2, T ]). Then, similarly to (3.20), we can bound the components of
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µ(κ • π) below since

µj = 1
ρ(κ • π)

∑
i∈[k]

µi[κ • π]i,j ≥ 1
kT

∑
i∈[k]

µiη
2 = η2

kT
.

Note also that µ̄(κ • π) ≥ µ(κ • π). So, since v ∈ Π1 and √
πi ≤ 1, we obtain

〈(
v1√
π1

, . . . ,
vk√
πk

)
, µ̄(κ • π)

〉
≥ η2

kT
,

and, since √
πi ≥ √

η, we also obtain

∣∣∣∣∣∣(µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)∣∣∣∣∣∣
1

≥ √
η.

Thus

∣∣∣∣∣
∣∣∣∣∣
〈(

v1√
π1

, . . . ,
vk√
πk

)
, µ̄(κ • π)

〉(
µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)∣∣∣∣∣
∣∣∣∣∣
1

≥ η5/2

kT
> 0.

So we obtain

v(κ ◦ π)R

||v(κ ◦ π)R||1
→

(
µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)
∣∣∣∣∣∣(µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)∣∣∣∣∣∣
1

.

But

(
µ̄1(κ • π)√π1, . . . , µ̄k(κ • π)√πk

)
∝
(
µ1(κ • π)√π1, . . . , µk(κ • π)√πk

)
∝ µ(κ ◦ π),

so we have shown
v(κ ◦ π)R

||[v(κ ◦ π)R]||1
→ µ(κ ◦ π),

as R → ∞, uniformly across v ∈ Π1, and κ ∈ [η, T ]k×k and π ∈ Π1 such that πi ≥ η,

exactly as required.
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3.4.3 Proof of Lemma 3.14

Recall the definition (3.6)

Bθ(A) := {B ∈ Rk×k
+ : |Bi,j − Ai,j | ≤ θ, ∀i, j ∈ [k]},

of the set of positive kernels whose entries differ from those of A by at most θ. We now

restate Lemma 3.14.

Lemma. For all 0 < η < T < ∞ with η < 1, and δ > 0, there exists θ = θ(δ, η, T ) ∈

(0, η2) and R = R(δ, η, T ) < ∞ such that

∣∣∣∣∣
∣∣∣∣∣ vD(1) . . . D(R)

||vD(1) . . . D(R)||1
− µ(κ ◦ π)

∣∣∣∣∣
∣∣∣∣∣
1

< δ, (3.7)

for all v ∈ Rk
≥0\{0}, κ ∈ [η, T ]k×k, π ∈ Π≤1 ∩ [η, 1]k, and D(1), . . . , D(R) ∈ Bθ(κ ◦ π).

Proof. For now we fix θ ∈ (0, η2), and will take this small enough at the end. Then, for

any A ∈ [η2, T ]k×k and D(1), . . . , D(R) ∈ Bθ(A),

(D(1)D(2) . . . D(R))i,j =
∑

i=i0,i1,...,iR=j

R∏
r=1

D
(r)
ir−1,ir

≤
∑

i=i0,i1,...,iR=j

R∏
r=1

(Air−1,ir + θ).

Therefore, defining D̄ := D(1) · · · D(R), since θ < η2 < η < T ,

(D̄ − AR)i,j ≤ kR−1(2R − 1) · θT R−1.

Similarly, for a lower bound

(AR − D̄)i,j ≤
∑

i=i0,i1,...,iR=j

R∏
r=1

Air−1,ir −
∑

i=i0,i1,...,iR=j

R∏
r=1

(Air−1,ir − θ).

The RHS is a polynomial in θ whose coefficients have alternating signs, and so we can

bound using the associated polynomial with every coefficient positive:

(AR − D̄)i,j ≤
∑

i=i0,i1,...,iR=j

R∏
r=1

(Air−1,ir + θ) −
∑

i=i0,i1,...,iR=j

R∏
r=1

Air−1,ir .
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That is, ∣∣∣(D̄ − AR)i,j

∣∣∣ ≤ kR−1(2R − 1) · θT R−1.

Since the fraction in (3.7) is unchanged under positive scalar multiplication of v, it

suffices to show the result for v ∈ Π1. For any v ∈ Π1:

∣∣∣∣vD̄ − vAR
∣∣∣∣

1 ≤ kR(2R − 1) · θT R−1.

For (3.7) we need to control the distance between the normalised vectors instead.

Observe first that for each i, ||vD(i)||1 ∈ [k(η − θ), k(T + θ)], whenever v ∈ Π1. Thus

||vD̄||1, ||vAR||1 ∈ [(k(η − θ))R, (k(T + θ))R]. From the triangle inequality,

∣∣∣∣∣
∣∣∣∣∣ vD̄

||vD̄||1
− vAR

||vAR||1

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣∣
∣∣∣∣∣vD̄ − vAR

||vD̄||1

∣∣∣∣∣
∣∣∣∣∣
1

+
∣∣∣∣∣
∣∣∣∣∣ vAR

||vD̄||1
− vAR

||vAR||1

∣∣∣∣∣
∣∣∣∣∣
1

≤ ||vD̄ − vAR||1
||vD̄||1

+ ||vAR||1

∣∣∣∣∣ 1
||vD̄||1

− 1
||vAR||1

∣∣∣∣∣
≤ ||vD̄ − vAR||1

||vD̄||1
+ ||vAR||1

∣∣∣||vD̄||1 − ||vAR||1
∣∣∣

||vD̄||1||vAR||1

≤ 2||vD̄ − vAR||1
||vD̄||1

, (3.49)

so for v ∈ Π1,

∣∣∣∣∣
∣∣∣∣∣ vD̄

||vD̄||1
− vAR

||vAR||1

∣∣∣∣∣
∣∣∣∣∣
1

≤ 2(2R − 1) · θT R−1

(η − θ)R
. (3.50)

Finally, we take A = κ ◦ π. Proposition 3.13 determines a value of R such that for all

κ ∈ [η, T ]k×k, π ∈ Π≤1 ∩ [η, 1]k, and v ∈ Π1, taking A = κ ◦ π, we have

∣∣∣∣∣
∣∣∣∣∣ vAR

||vAR||1
− µ(A)

∣∣∣∣∣
∣∣∣∣∣
1

≤ δ

2 .

Combining with (3.50) and taking θ small enough, the result follows after extending

from v ∈ Π1 to v ∈ Rk
≥0\{0}.
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3.4.4 Proof of Lemma 3.15

We now restate Lemma 3.15.

Lemma. Let A be a compact subset of Rk×k
≥0 with the property that for any A ∈ A,

the Perron root of A is simple. Then there exists a constant C(A) < ∞ such that, for

all matrices A, A′ ∈ A,

||µ(A) − µ(A′)||1 ≤ C(A) max
i,j∈[k]

|Ai,j − A′
i,j |. (3.8)

In particular, for any 0 < η < T < ∞, there exists C(η, T ) < ∞ such that, for all

matrices A, A′ ∈ [η, T ]k×k,

||µ(A) − µ(A′)||1 ≤ C(η, T ) max
i,j∈[k]

|Ai,j − A′
i,j |. (3.9)

Proof. Note that (3.9) follows by taking A = [η, T ]k×k in (3.8). To show (3.8), we use

the following result about the local smoothness of eigenvalues and eigenvectors as the

matrix varies in the neighbourhood of a matrix with a simple eigenvalue.

THEOREM ([48], §3.9, Theorem 8). Let ρ0 be a simple eigenvalue of a matrix

A0 ∈ Ck×k, and µ0 an associated left-eigenvector satisfying µ†
0µ0 = 1. Then, there

exists a neighbourhood of N(A0) ⊆ Ck×k of A0, and functions ρ : N(A0) → C and

µ̄ : N(A0) → Ck, such that

• ρ(A0) = ρ0 and µ̄(A0) = µ0,

• µ̄(A)A = ρ(A)µ̄(A), and µ†
0µ̄(A) = 1 for all A ∈ N(A0),

• ρ and µ̄ are infinitely differentiable on N(A0).

If we take A0 ∈ A, and µ0 = µ(A), then it follows that µ̄ is locally Lipschitz as

a function N(A0) ∩ A → Rk
+. In this statement µ̄(A) differs from our definition

µ(A) by a normalising factor, that varies in N(A0). However, the choice µ̄ satisfies

µ̄(A0)T µ̄(A0) = 1, and so for each i ∈ [k], µ̄i(A0) ≤ 1. Therefore, for any A ∈ N(A0)∩A,

||µ̄(A)||1 ≥ µ̄(A0)T µ̄(A) = 1. (3.51)
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Now, for A, A′ ∈ N(A0) ∩ A,

||µ(A) − µ(A′)||1 =
∣∣∣∣∣∣∣∣ µ̄(A)

||µ̄(A)||1
− µ̄(A′)

||µ̄(A′)||1

∣∣∣∣∣∣∣∣.
Therefore, as in (3.49),

||µ(A) − µ(A′)||1 ≤ 2||µ̄(A) − µ̄(A′)||1
||µ̄(A)||1

(3.51)
≤ 2||µ̄(A) − µ̄(A′)||1.

Since µ̄ is locally Lipschitz on N(A0) ∩ A, it follows that µ is also locally Lipschitz on

N(A0) ∩ A. Thus µ is Lipschitz on A by compactness.

3.4.5 Proof of Lemma 3.19

We now restate Lemma 3.19.

Lemma. Fix η > 0, and set θ(η) := η4

8 . Then there exists a function c : (0, θ(η)) →

(0, η/2] such that:

• for all ϵ ∈ (0, θ(η)), whenever we take π ∈ Π≤1 satisfying πi ≥ η for all i ∈ [k],

and κ ∈ [η, ∞)k×k such that ρ(κ ◦ π) ≤ 1 + ϵ, then for any π′ ∈ Π≤1 satisfying

π′ ≤ π, and ||π − π′||1 ≥ c(ϵ),

we have ρ(κ ◦ π′) ≤ 1 − ϵ;

• as ϵ → 0, c(ϵ) → 0.

Proof. For each ϵ > 0, consider any choice of c(ϵ) ∈ (0, η/2] for now, and take κ, π, π′

satisfying the conditions. By considering for example a suitable linear combination of π

and π′, there exists π′′ ∈ Π≤1 such that π′ ≤ π′′ ≤ π and ||π − π′′|| = c(ϵ). Note that

since c(ϵ) ≤ η/2, π′′
i ≥ η/2 for every i. To avoid confusion when we multiply on the

right by the matrices themselves, we let v = µ(κ ◦ π) and v′′ = µ(κ ◦ π′′). Then,

v′′
j =

∑
v′′

i κi,jπ′′
j ≥ η2

2 , ∀j ∈ [k].
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We now consider the Collatz–Wielandt formula (3.3) applied to the matrix κ ◦ π and v′′

(which is not generally an eigenvector of κ ◦ π). We conclude that there exists i ∈ [k]

such that [v′′(κ ◦ π)]i ≤ (1 + ϵ)v′′
i . Thus

ρ(κ ◦ π′′)v′′
i = [v′′(κ ◦ π′′)]i = [v′′(κ ◦ π)]i − [v′′(κ ◦ (π − π′′))]i

≤ (1 + ϵ)v′′
i − η2

2 · η · c(ϵ)

≤ (1 + ϵ)v′′
i − η2

2 · η · c(ϵ)v′′
i .

Note that since ϵ ≤ θ(η) = η4

8 , we have 4ϵ
η3 ≤ η

2 . So we may choose c(ϵ) ∈ [ 4ϵ
η3 , η

2 ], and in

particular c(ϵ) = 4ϵ
η3 is suitable. Corollary 3.11 then shows

ρ(κ ◦ π′) ≤ ρ(κ ◦ π′′) ≤ 1 − ϵ,

as required.



Chapter 4

Frozen percolation - convergence

to Smoluchowski’s equations

In Section 1.1.4, we introduced multiplicative coalescence, and the corresponding

Smoluchowski equations (1.4). In Section 1.3.1, we introduced Ráth’s model of mean-

field frozen percolation.

In this chapter, we show convergence of (vN ), the proportions of vertices in components

of each size in a sequence of mean-field frozen percolation processes, to a solution of

the corresponding Smoluchowski equations. In particular, we are able to show this in

greater generality than Ráth’s Theorem 1.2 [60], by adapting a method used by Merle

and Normand [51] for a related process where components are, essentially, frozen once

they reach a certain threshold size. We will use this in Chapter 5 to study a model of

mean-field frozen percolation where the initial graph is an IRG with k types, as defined

in Section 3.1.2.
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4.1 Preliminaries

4.1.1 Definitions and results

Multiplicative Smoluchowski equations: existence and uniqueness

Recall from (1.4) the Smoluchowski equations with multiplicative kernel

d
dt

vk(t) = k

2

k−1∑
ℓ=1

vℓ(t)vk−ℓ(t) − kvk(t)
∞∑

ℓ=1
vℓ(t), k ≥ 1. (4.1)

For our purposes, throughout we will always assume vk(t) ≥ 0. Sometimes it will be

helpful to use the following notation for the total mass

Φ(t) :=
∞∑

k=1
vk(t). (4.2)

We will use Normand and Zambotti’s results [53] about the global existence and

uniqueness of solutions to (4.1). The following slightly weaker summary will be sufficient

for our requirements.

THEOREM 4.1 (Theorem 2.2, [53]). Whenever ∑k≥1 vk(0) < ∞, there exists a

unique solution to Smoluchowski’s equations (4.1) starting from v(0). For this solution,

Φ(t) is uniformly continuous on [0, ∞). Indeed, Φ(t) is constant on [0, Tg] and strictly

decreasing on [Tg, ∞), where

Tg = 1∑
k≥1

kvk(0) .

Note. Theorem 2.2 of [53] further shows that Φ is analytic on [0, ∞)\{Tg}. Some steps

of the arguments in Section 4.2.2 would be easier with the stronger assumption that Φ

is Lipschitz on [0, ∞). We believe that Φ should be Lipschitz for those initial conditions

considered in Chapter 5, but we avoid this issue by using the known, weaker condition

of uniform continuity.
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Mean-field frozen percolation

We recall the definition of the mean-field frozen percolation model given in Section 1.3.1.

In particular, for a realisation of the model on N vertices, we defined vN
k (t) ≥ 0 to be

the proportion of vertices which are alive and in a component of size k at time t. To

allow slightly more generality, we will relax the condition that the initial graph has N

vertices, but we will continue to demand for a mean-field frozen percolation process

with index N , that each potential edge is added at rate 1/N , and the lightning rate per

vertex is λ(N), satisfying the critical scaling

1/N ≪ λ(N) ≪ 1.

Each process (vN ) is a random non-negative element of D([0, ∞), ℓ1), the Skorohod

space of càdlàg sequence-valued functions with bounded absolute sum. Furthermore

vN
k (t) is always non-negative. Since all transitions of (vN ) are governed by independent

exponential clocks, each (vN ) is a pure-jump Markov process, with natural filtration

(FN (t), t ≥ 0). From now onwards in this chapter, we will make no reference to any

underlying graph structure, and view frozen percolation as multiplicative coalescence

with linear deletion.

We assume hereafter that a sequence of mean-field frozen percolation processes (vN ) is

given, where each vN has index N , and the initial state vN (0) has non-negative entries

and may be random. As before, we set ΦN (t) := ∑
k≥1 vN

k (t). In this chapter, we will

prove the following result about convergence of the processes (vN ). Recall from Section

1.3.1 that this is a mild generalisation of Ráth’s Theorem 1.2 [60], where the initial

conditions vN (0) are deterministic and have finite support. (We remark that it is the

second of these that requires substantial work to generalise.) In what follows, we will

always assume v(0) has non-negative entries.

THEOREM 4.2. We assume vN (0) d→ v(0) ∈ ℓ1, and let v be the unique solution

to (4.1) started from v(0), as given by Theorem 4.1. Then vN → v in distribution



126 Frozen percolation - convergence to Smoluchowski’s equations

in D([0, ∞), ℓ1), with respect to the uniform topology. In particular, ΦN → Φ in

distribution in D([0, ∞)) with respect to the uniform topology.

For much of the chapter, we will work with c and (cN ), defined by

ck(t) := 1
k

vk(t), cN
k (t) := 1

k
vN

k (t), k ≥ 1, t ∈ [0, ∞), (4.3)

which represent the density of blocks with size k, rather than the proportion of vertices

on blocks with size k. Clearly v(0) ∈ ℓ1 implies c(0) ∈ ℓ1, and furthermore vN (0) d→ v(0)

in ℓ1 implies cN (0) d→ c(0) in ℓ1.

In the remainder of this section, we introduce the notation and show a tightness

result for the processes (cN ). We prove convergence of (cN ) in Section 4.2.1, at times

following closely the approach of Merle and Normand [51]. In Section 4.2.2 we establish

convergence of (ΦN ) and, from this, convergence of (vN ).

4.1.2 Martingale formulation

Each process cN corresponding to a mean-field frozen percolation process with index

N is Markov. We will prove convergence of sequences of such processes (cN ) via a

martingale formulation in the manner of Stroock and Varadhan [67].

With direct reference to [51], we define the product

⟨f, g⟩ =
∑
k≥1

f(k)g(k), ∀f, g : N → R≥0.

In a mild abuse of notation, we view both k and ck(t) as functions of k of this form.

So, for example, ⟨cN (t), k⟩ = ∑
k≥1 vN

k (t) = ΦN (t) is the proportion of vertices alive at

time t; and ⟨cN (t), 1⟩ = ∑
k≥1 cN

k (t) is the rescaled number of alive components. The

following lemma about these processes is clear from the dynamics.

Lemma 4.3. For all N , both ⟨cN (·), 1⟩ and ⟨cN (·), k⟩ are almost surely non-increasing.
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The definition which follows is analogous to the definition of a weak solution to an SDE.

We say (ck(t), k ≥ 1), a collection of non-negative continuous functions, is a solution to

Smoluchowski’s equation with initial condition c(0) ∈ [0, ∞)N if

• for every t ≥ 0,
∫ t

0⟨c(t), k⟩2ds < ∞;

• for every t ≥ 0 and bounded f : N → R≥0

⟨c(t), f⟩ − ⟨c(0), f⟩ = 1
2

∫ t

0

∑
k,ℓ≥1

kℓck(s)cℓ(s)[f(k + ℓ) − f(k) − f(ℓ)]ds. (4.4)

Note that (4.4) is classically defined for f with compact support, but Merle and Normand

show in Lemma 2.2 [51] that this immediately extends to bounded f . We can recover

(1.3) by taking f = 1{k} and differentiating (4.4). Conversely, (4.4) for bounded f

follows from (1.3) by linearity.

4.1.3 The generator of cN

During a frozen percolation process with index N , there are two types of event which

might occur.

• Two components of sizes k and ℓ might coalesce. In the graph setting, this

corresponds to the arrival of an edge between two hitherto disjoint components.

This has the effect of creating a component of size k + ℓ, while removing a

component of each size k, ℓ, so let

∆N (k, ℓ) := 1
N

[
1{k+ℓ} − 1{k} − 1{ℓ}

]
.

Now define:

θN
k,ℓ(η) :=


kℓη(k)η(ℓ)N if k ̸= ℓ

k2η(k)
[
η(k) − 1

N

]
N if k = ℓ.

Then if (cN ) is in state η ∈ ℓ1, it jumps to state η + ∆N (k, ℓ) at rate θN
k,ℓ(η) when

k ̸= ℓ and to state η + ∆N (k, k) at rate 1
2θN

k,k(η).
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• A component may be frozen. Using bars to denote transitions arising from

freezing, we let ∆̄N (k) := − 1
N 1{k}. Then, if (cN ) is in state η ∈ ℓ1, it jumps to

state η + ∆̄N (k) at rate θ̄N
k (η) := kη(k)Nλ(N), where λ(N) is the freezing rate

per vertex.

Hence (cN ) has generator

GN F (η) = 1
2

N∑
k,ℓ=1

[
F
(
η + ∆N (k, ℓ)

)
− F (η)

]
θN

k,ℓ(η) (4.5)

+
N∑

k=1

[
F
(
η + ∆̄N (k)

)
− F (η)

]
θ̄N

k (η),

for any F : ℓ1 → R. From the definition of the generator of a Markov process (see, for

example, Theorem 1.6 in Section 7 of [19]), we have that

MN,F (t) := F
(
cN (t)

)
− F

(
cN (0)

)
−
∫ t

0
GN F

(
cN (s)

)
ds (4.6)

is a martingale for any bounded F : ℓ1 → R. It will be sufficient for our purposes to

consider linear test functions, that is F (η) = ⟨f, η⟩ for some f : N → R. We can then

rewrite (4.5) as

GN F (η) = 1
2

N∑
k,ℓ=1

[f(k + ℓ) − f(k) − f(ℓ)]kℓη(k)η(ℓ) (4.7)

− 1
N

N∑
k=1

[f(2k) − 2f(k)]k2η(k) − λ(N)
N∑

k=1
f(k)kη(k).

When F is linear, it is either identically zero, or unbounded. However, F (cN (·)) is

bounded in the following two cases:

• when F (η) = ⟨f, η⟩ for some bounded f : N → R, since

∣∣∣F(cN (t)
)∣∣∣ ≤ sup

k∈N
|f(k)|⟨cN (t), 1⟩

Lemma 4.3
≤ sup

k∈N
|f(k)|⟨cN (0), 1⟩ < ∞.

• When F (η) = ⟨η, k⟩, then F (cN (t)) = ⟨cN (t), k⟩, which is bounded by Lemma 4.3

directly.
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Thus for both of these cases, MN,F (t) as in (4.6) is also a martingale.

4.1.4 Tightness

The following lemma is directly equivalent to Lemma 2.5 in [51], with the extra condition

that we may allow cN (0) to be random without affecting the proof.

Lemma 4.4. Assume that c(0) ∈ ℓ1 satisfies ⟨c(0), k⟩ < ∞. Take M < ∞ and assume

that the initial distributions (cN (0)) of a family of frozen percolation processes satisfy

⟨cN (0), k⟩ ≤ M a.s. and cN (0) d→ c(0) as N → ∞. Then the family of processes (cN ) is

tight in D([0, ∞), ℓ1), and any limit point is a continuous function from [0, ∞) to ℓ1.

Proof. Since ℓ1 is complete and separable, it will suffice to check Aldous’s tightness

conditions, with reference to Theorem §3.7.2 of [24]. It is clear that the uniform

boundedness (in probability) condition

lim
K→∞

lim sup
N→∞

P
(

sup
t∈R≥0

||cN (t)||1 > K

)
→ 0, (4.8)

holds since ||cN (t)||1 is non-increasing in t, and ||cN (0)||1 is uniformly bounded in

probability.

The second condition demands that a large jump is asymptotically unlikely to occur in

any given small time interval. Formally, we require that for all ϵ, T > 0, there exists

δ > 0 such that for any τN , an FN -stopping time with τN ≤ T , we have

lim sup
N→∞

P
(

sup
η∈[0,δ]

|cN (τN + η) − cN (τN )| ≥ ϵ

)
≤ ϵ. (4.9)

Jumps of cN caused by freezing have size 1/N in ℓ1, and jumps caused by coalescence

have size at most 3/N . Therefore,

E
[

sup
η∈[0,δ]

∣∣cN (τN + η) − cN (τN )
∣∣ ∣∣∣ FN (τN )

]
≤ λ(N)δ

N
⟨NcN (τN ), k⟩

+ 3
N

· δ

N
⟨NcN (τN ), k⟩2 (4.10)

≤ λ(N)δ⟨cN (0), k⟩ + 3δ⟨cN (0), k⟩2 a.s.
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≤ λ(N)δM + 3δM2 a.s.

The condition (4.9) follows from Markov’s inequality, so together with (4.8), we have

tightness. Continuity of the limit points follows, since, in addition to (4.9), the jumps

have size (in ℓ1) at most 3/N , which vanishes as N → ∞.

Remark. This lemma illustrates the advantage of working with (cN (·)) rather than

(vN (·)), as the sizes of the jumps of the latter family of processes do not obviously

vanish as N → ∞. (Though this will be a consequence of Theorem 4.2.)

4.2 Convergence

We prove Theorem 4.2. We assume that v(0) and a sequence (vN ) are given, satisfying

the conditions in the statement of Theorem 4.2. We will work with the associated c(0)

and sequence (cN ), as defined by (4.3).

4.2.1 Convergence of (cN)

We will show that any limit point of (cN ) in D([0, ∞), ℓ1) solves Smoluchowski’s equation.

We will do this by showing that for any bounded F , the evolution of F (cN (·)) is

dominated, for large N , by the small coalescence terms in (4.7). This is achieved

by bounding in expectation the amount of mass in large components on compact

time-intervals.

We consider a continuous limit process c and invoke Skorohod’s representation theorem

on the relevant subsequence, which for ease of notation we assume to be N. So we may

assume that we work in a probability space (P,F, Ω) such that

cN → c P-a.s. in D([0, ∞), ℓ1), (4.11)

with respect to the uniform topology, and where c is almost surely continuous. Through-

out, we assume T > 0 is fixed, and consider the time-interval [0, T ]. We will show that

c satisfies (4.4) on [0, T ].
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We consider the norm on L1(P ⊗ 1[0,T ]dt) given by

||g|| = E
[∫ T

0
|g(t)|dt

]
.

Note immediately, that if g ∈ L1(P ⊗ 1[0,T ]dt), and we define h(t) =
∫ t

0 g(s)ds for

t ∈ [0, T ], then h ∈ L1(P ⊗ 1[0,T ]dt) and

||h|| = E
[∫ T

0

∣∣∣∣∫ t

0
g(s)ds

∣∣∣∣dt

]

≤ E
[∫ T

0

∫ t

0
|g(s)|dsdt

]
.

≤ TE
[∫ T

0
|g(s)|ds

]
= T ||g||. (4.12)

We show first that the proportion of time during which there is a block of size Θ(N) is

small for large N .

Lemma 4.5. Whenever the family of processes (cN ) satisfies

sup
N∈N

E
[
⟨cN (0), k⟩

]
< ∞,

we have

lim
N→∞

1
N

||⟨cN (·), k2⟩|| = 0. (4.13)

Proof. Let F : ℓ1 → R be defined by F (η) = ⟨η, k⟩. Then, as in Section 4.1.3, for each

N , the process MN,F (t) defined by (4.6) is a martingale. But for this choice of F ,

corresponding to f(k) = k, the first two terms in (4.7) vanish, and so we obtain that

E
[
⟨cN (0), k⟩

]
− E

[
⟨cN (t), k⟩

]
= λ(N)E

[∫ t

0
⟨cN (s), k2⟩ds

]
. (4.14)

Therefore, by Lemma 4.3,

0 ≤ ||⟨cN (·), k⟩|| ≤
E
[
⟨cN (0), k2⟩

]
λ(N) .

The required result (4.13) follows from the critical scaling (4.3) of λ(N).
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We now show that the rescaled number of blocks with size at least b is small in norm

|| · ||, for large b and large N . We use the same test function F b as Merle and Normand

in Lemma 2.5 of [51], but our Lemma 4.5 simplifies the rest of the proof, without the

requirement to truncate the component sizes.

Lemma 4.6. We assume that the family of processes (cN ) satisfies E
[
⟨cN (0), k⟩

]
≤ M

for some M < ∞. Then, for every integer b ≥ 1,

lim sup
N→∞

∣∣∣∣∣
∣∣∣∣∣

N∑
k=b

kcN
k (·)

∣∣∣∣∣
∣∣∣∣∣ ≤

√
2MT

b
. (4.15)

Proof. Define f b : N → R by f b(k) := k ∧ b, and F b : ℓ1 → R by F b(η) := ⟨f b, η⟩. We

will bound GN F b(η). Then,

k, ℓ ≥ b ⇒ f b(k + ℓ) − f b(k) − f b(ℓ) = −b,

∀k, ℓ ∈ N, −b ≤ f b(k + ℓ) − f b(k) − f b(ℓ) ≤ 0.

Therefore

N∑
k,ℓ=1

[
f b(k + ℓ) − f b(k) − f b(ℓ)

]
kℓη(k)η(ℓ) ≤ −b

(
N∑

k=b

kη(k)
)2

. (4.16)

Now, taking f = f b in (4.7), and using (4.16),

GN F b
(
cN (t)

)
≤ − b

2

(
N∑

k=b

kcN
k (t)

)2

+ b

N
⟨cN (t), k2⟩. (4.17)

Note that we ignore the contribution to GN F b(η) from freezing, since this is negative.

Then, since MN,F b is a martingale, from (4.6) and (4.17) we obtain

b

2

∣∣∣∣∣∣
∣∣∣∣∣∣
(

N∑
k=b

kcN
k (·)

)2∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ E

[
F b
(
cN (0)

)]
− E

[
F b
(
cN (T )

)]
+ b

N

∣∣∣∣∣∣⟨cN (·), k2⟩
∣∣∣∣∣∣

≤ E
[
⟨cN (0), k⟩

]
+ b

N

∣∣∣∣∣∣⟨cN (·), k2⟩
∣∣∣∣∣∣.
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Lemma 4.5 shows that this final term vanishes as N → ∞. We then apply Cauchy–

Schwarz twice to conclude

lim sup
N→∞

∣∣∣∣∣
∣∣∣∣∣

N∑
k=b

kcN
k (·)

∣∣∣∣∣
∣∣∣∣∣
2

≤ T lim sup
N→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
(

N∑
k=b

kcN
k (·)

)2∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2MT

b
.

The required result (4.15) follows.

For any integer b ≥ 1, we now consider a truncated and modified generator Gb defined

by

GbF (η) = 1
2

b−1∑
k,ℓ=1

[f(k + ℓ) − f(k) − f(ℓ)]kℓη(k)η(ℓ),

for F (η) = ⟨f, η⟩ where f : N → R is bounded. We can compare GbF (cN (t)) and the

original generator GN F (cN (t)), as defined in (4.7).

Recall (from the conditions of Theorem 4.2, which we are proving) that (vN ) satisfies

vN (0) d→ v(0) in ℓ1, and thus there exists M < ∞ such that ||vN (0)||1 = ⟨cN (0), k⟩ ≤ M

for all N . Thus by Lemma 4.3, we have ⟨cN (t), k⟩ ≤ M for all t ≥ 0. Then, for N ≥ b

and t ∈ [0, T ],

∣∣∣GN F
(
cN (t)

)
− GbF

(
cN (t)

)∣∣∣
≤ 1

2

N∑
k,ℓ=1
k∨ℓ≥b

∣∣∣f(k + ℓ) − f(k) − f(ℓ)
∣∣∣kℓcN

k (t)cN
ℓ (t)

+ 1
N

N∑
k=1

∣∣∣f(2k) − 2f(k)
∣∣∣k2cN

k (t) + λ(N)
N∑

k=1

∣∣∣f(k)
∣∣∣kcN

k (t)

≤ sup
k∈N

|f(k)|

3⟨cN (t), k⟩

 N∑
k≥b

kcN
k (t)

+ 3
N

⟨cN (t), k2⟩ + λ(N)⟨cN (t), k⟩


≤ sup

k∈N
|f(k)|

3M

 N∑
k≥b

kcN
k (t)

+ 3
N

⟨cN (t), k2⟩ + Mλ(N)

.

Therefore, recalling λ(N) ≪ 1, and applying Lemmas 4.5 and 4.6,

lim sup
N→∞

∣∣∣∣∣∣GN F
(
cN (·)

)
− GbF

(
cN (·)

)∣∣∣∣∣∣ ≤ 3M

√
2MT

b
sup
k∈N

|f(k)|. (4.18)
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Since cN → c uniformly P-a.s., we also have GbF (cN (·)) → GbF (c(·)) uniformly on

[0, T ], and so

lim
N→∞

||GbF (cN ) − GbF (c)|| = 0. (4.19)

Recall (4.12), which controls the behaviour of the norm || · || under integration. Using

this, from (4.18), (4.19), we have

lim sup
N→∞

∣∣∣∣∣∣∣∣∫ ·

0
GN F (cN (s))ds −

∫ ·

0
GbF (c(s))ds

∣∣∣∣∣∣∣∣ ≤

√
18M3T 3

b
sup
k∈N

|f(k)|. (4.20)

Recall from Section 4.1.3, the definition of MN,F , the martingale part of F (cN (·)), and

let N → ∞ in all the terms on the RHS of (4.6). First, we show that ||MN,F || vanishes

as N → ∞. Here, again we follow the method of Merle and Normand [51] closely. Any

jump of MN,F has size at most 3
N supk∈N |f(k)|, and as in (4.10), such jumps occur at

a rate bounded by

λ(N)N⟨cN (0), k⟩ + N⟨cN (0), k⟩2 ≤ Mλ(N)N + M2N.

Thus we can bound the expectation of the quadratic variation [MN,F ]T , as

lim sup
N→∞

E
[
[MN,F ]T

]
≤ T lim sup

N→∞

(
3
N

sup
k∈N

|f(k)|
)2[

Mλ(N)N + M2N
]

= 0.

So by Doob’s inequality, as N → ∞,

E
[

sup
t∈[0,T ]

(MN,F
t )2

]
≤ 4E

[
(MN,F

T )2
]

= 4E
[
[MN,F ]T

]
→ 0.

By Cauchy–Schwarz, E
[

sup
t∈[0,T ]

∣∣∣MN,F
t

∣∣∣] → 0, from which we conclude

||MN,F || → 0. (4.21)
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The assumption that cN → c uniformly on [0, T ] implies F (cN ) → F (c) in || · ||. So we

let N → ∞ in (4.6) and use (4.20) and (4.21) to obtain

∣∣∣∣∣∣
∣∣∣∣∣∣F (c(·)) − F (c(0)) −

∫ ·

0

1
2

b−1∑
k,ℓ=1

[f(k + ℓ) − f(k) − f(ℓ)]kℓck(t)cℓ(t)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ αb,

where αb :=
√

18M3T 3

b supk∈N |f(k)|. We may take b → ∞, and observe that c is P-a.s.

continuous, so we find that c solves (4.4) for all t ∈ [0, T ] as required.

4.2.2 Convergence of (ΦN) and (vN)

As Merle and Normand observe in Section 2.3 of [51], the convergence cN → c in

D([0, ∞), ℓ1) does not imply the convergence ΦN → Φ in D([0, ∞)) immediately. How-

ever, convergence of ΦN can be established quickly as follows.

From the monotone convergence theorem,

lim
b→∞

∣∣∣∣∣
∣∣∣∣∣Φ(·) −

b−1∑
k=1

kck(·)
∣∣∣∣∣
∣∣∣∣∣ = 0. (4.22)

For the discrete processes, we can rewrite (4.15) as

lim
b→∞

lim sup
N→∞

∣∣∣∣∣
∣∣∣∣∣ΦN (·) −

b−1∑
k=1

kcN
k (·)

∣∣∣∣∣
∣∣∣∣∣ = 0. (4.23)

Finally, since almost surely cN → c uniformly with respect to ℓ1, we have

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣
b−1∑
k=1

kcN
k (·) −

b−1∑
k=1

kck(·)
∣∣∣∣∣
∣∣∣∣∣ = 0 ∀b ≥ 1. (4.24)

Adding (4.22), (4.23) and (4.24), and letting b → ∞, we obtain

lim
N→∞

∣∣∣∣∣∣ΦN (·) − Φ(·)
∣∣∣∣∣∣ = 0. (4.25)

It remains to show that ΦN is uniformly close to Φ in probability. We observe that ΦN

is monotone decreasing, and Φ is monotone decreasing and uniformly continuous, by
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Theorem 4.1. That is, for every δ ∈ (0, T ] we have a constant C(δ) such that whenever

|s − t| ≤ δ for s, t ∈ [0, T ], then |Φ(s) − Φ(t)| ≤ C(δ), and we may assume that C(δ) → 0

as δ → 0.

Choose some δ < T/2. Then suppose ∃t ∈ [0, T/2] for which Φ(t) ≥ ΦN (t) + 2C(δ).

Then ∫ t+δ

t
|ΦN (s) − Φ(s)|ds ≥

∫ t+δ

t

[
Φ(t) − C(δ) − ΦN (t)

]
ds ≥ δC(δ).

Therefore

lim sup
N→0

P
(

sup
t∈[0,T/2]

[
Φ(t) − ΦN (t)

]
≥ 2C(δ)

)
≤

lim supN→∞

∣∣∣∣∣∣ΦN (·) − Φ(·)
∣∣∣∣∣∣

δC(δ) = 0.

(4.26)

Similarly, if ∃t ∈ [δ, T/2] for which ΦN (t) ≥ Φ(t) + 2C(δ), then

∫ t

t−δ
|ΦN (s) − Φ(s)|ds ≥

∫ t

t−δ

[
ΦN (t) − (Φ(t) + C(δ)

]
ds ≥ δC(δ).

and so

lim sup
N→0

P
(

sup
t∈[δ,T/2]

[
ΦN (t) − Φ(t)

]
≥ 2C(δ)

)
≤

lim supN→∞

∣∣∣∣∣∣ΦN (·) − Φ(·)
∣∣∣∣∣∣

δC(δ) = 0.

(4.27)

Finally, observe that

sup
t∈[0,δ]

[
ΦN (t) − Φ(t)

]
≤
[
ΦN (0) − Φ(δ)

]
.

But, by assumption, ΦN (0) P→ Φ(0) as N → ∞, and Φ(δ) → Φ(0) as δ → 0. So,

combining with (4.26) and (4.27), we obtain

sup
t∈[0,T/2]

∣∣∣ΦN (t) − Φ(t)
∣∣∣ P→ 0, (4.28)

as N → ∞. Since T > 0 was arbitrary, we may replace T/2 by T in the statement of

(4.28).
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Finally, we want to show convergence of (vN ). We could appeal to Scheffé’s Lemma,

but as it is short, we give an argument from first principles. Note that for any b ≥ 1,

and t ≥ 0,

||vN (t) − v(t)||1 ≤ b||cN (t) − c(t)||1 +
∣∣∣∣∣ΦN (t) −

b−1∑
ℓ=1

vN
ℓ (t)

∣∣∣∣∣+
∣∣∣∣∣Φ(t) −

b−1∑
ℓ=1

vℓ(t)
∣∣∣∣∣. (4.29)

As b → ∞, the third term of (4.29) vanishes uniformly on t ∈ [0, T ]. As N → ∞, the

second term approaches the third term uniformly in probability by the convergence

of cN to c, and by (4.28). Similarly, as N → ∞ the first term vanishes uniformly in

probability.

Therefore

sup
t∈[0,T ]

||vN (t) − v(t)||1 → 0, P − a.s.

and the proof of Theorem 4.2 is complete.





Chapter 5

Frozen percolation with k types

5.1 Discrete models and a limit object

We consider frozen percolation, started from an inhomogeneous random graph with

k types, and seek to understand the asymptotic behaviour of the proportion of alive

vertices of each type. The evolution in time of these asymptotic proportions will be

described by the solution to an Rk-valued differential equation, which we call a frozen

percolation type flow.

5.1.1 Multitype frozen percolation processes

Definition 5.1. We assume throughout that a lightning rate λ : N → R+ is given,

satisfying 1/N ≪ λ(N) ≪ 1, exactly as in the original mean-field frozen percolation

model. As in Chapter 3, we also fix an integer k, and we will consider kernels and

graphs with k types throughout this chapter. Let p be a (possibly random) element of

Nk
0, and κ a non-negative kernel. We define the multitype frozen percolation process with

index N , denoted
(
GN,p,κ,λ(N)(t)

)
t≥0

, as follows. We set GN,p,κ,λ(N)(0) to be a copy of

GN (p, κ), an inhomogeneous random graph with k types, as in Definition 3.2.

The set of vertices is [∑ pi], and the type each vertex is assigned in the initial configura-

tion remains fixed as time advances. Then we run the frozen percolation dynamics with

lightning rate λ(N). That is, we declare all vertices to be alive initially, and we add
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edges at rate 1/N independently between any pair of alive vertices that are not already

connected by an edge. Independently, each vertex is struck by lightning at rate λ(N),

and when this happens, all the vertices in its component are declared frozen. With

these dynamics, we write GN,p,κ,λ(N)(t) for the graph of alive vertices, with their types,

at time t.

We will assume that a kernel κ and a Nk
0-valued sequence pN is given. We will consider

the corresponding sequence of processes (GN,pN ,κ,λ(N)). Sometimes we will suppress

notational dependence on pN , κ and λ(N).

For every time t ≥ 0, and i ∈ [k], we define πN
i (t) := 1

N #{alive vertices of type i at time t},

and ΦN (t) := ∑k
i=1 πN

i (t), the total proportion of alive vertices at time t. We now state

a simple consequence of the definition which we will use repeatedly. Recall that 1 is the

k × k matrix for which every entry is 1.

It will be important throughout to distinguish between various types of conditioning.

To this end, we let (FN (t))t≥0 be the natural filtration of (πN (t)).

Proposition 5.2. Let ĜN (t) be obtained from GN (t) by relabelling the alive vertices

with {1, . . . , NΦN (t)}, uniformly at random. Then, conditional on FN (t), ĜN (t) has

the same distribution as GN (NπN (t), κ + t1) on the set of graphs with k types.

Proof. To make the argument more clear, we condition on additional information. For

now, take t ≥ 0 fixed. Given the frozen percolation process GN,p,κ,λ(N), we define

the sigma-algebra F̂N (t) generated by (πN (s), s ∈ [0, t]), and the types of all vertices

assigned at time 0, and A(t), the set of alive vertices at time t. We claim that conditional

on F̂N (t), ĜN (t) has the same distribution as GN
(
NπN (t), κ + t1

)
on the set of graphs

with k types, which clearly implies the statement of the proposition.

For brevity, we set P := ∑
pi. In the definition of a frozen percolation process GN,p,κ,λ(N),

we can consider the edge-arrival process to be a Poisson point process E on
([P ]

2
)
× [0, ∞),

with intensity given by the product of counting measure and Lebesgue measure, scaled

by 1
N . We also consider the lightning process to be a Poisson point process L on

[P ] × [0, ∞), with intensity given by the product of counting measure and Lebesgue

measure, scaled by λ(N). In particular, we take E and L to be independent.
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Given GN,p,κ,λ(N)(0), we can recover the whole frozen percolation process GN,p,κ,λ(N) on

[0, ∞) using E and L in the natural way, ignoring points in E corresponding to edges

which are already present, and points in both E and L that correspond to already-

frozen vertices. In particular, the evolution of GN,p,κ,λ(N) on [0, t] is independent of the

restrictions of E and L to
([P ]

2
)

× [t, ∞] and [P ] × [t, ∞], respectively.

Let type be the (random) type function [P ] → [k] of the initially-alive vertices. Let t

be any function [P ] → [k] satisfying |t−1(i)| = pi for all i ∈ [k], and let A ⊆ [P ]. Then

the event B = {type = t, A(t) = A} depends precisely on

1. the types in GN,p,κ,λ(N)(0);

2. the restriction of the edge set of GN,p,κ,λ(N)(0) to
([P ]

2
)
\
([A]

2
)
;

3. the restriction of E to
(([P ]

2
)
\
([A]

2
))

× [0, t];

4. the restriction of L to [P ] × [0, t].

Furthermore, conditional on {type = t, A(t) = A}, the restriction of πN to [0, t] depends

only on conditions 1 to 4 as well. Therefore, B, is independent of the restriction of the

edge set of GN,p,κ,λ(N)(0) to
([A]

2
)
, and the restriction of E to

([A]
2
)

× [0, ∞), and thus so

is πN restricted to [0, t], conditional on B.

It follows that, conditional on F̂N (t), the vertex set of GN,p,κ,λ(N)(t) is A(t), and

the types are given by the restriction of type to A(t). Since |A(t)| = ||πN (t)||1, the

distribution of the latter is the uniform distribution among functions f : A(t) → [k]

satisfying |f−1| = NπN
i (t) for all i ∈ [k]. With this conditioning, the presence of an

edge between vertices x, y ∈ A(t) depends only on the presence of an edge between x, y

in GN,p,κ,λ(N)(0), and the restriction of E to {x, y} × [0, t], and so has probability

1 − exp
(

−
κtype(x),type(y)

N

)
· exp(−t/N).

Furthermore, since conditional on types, edges in GN,p,κ,λ(N)(0) are independent, and the

restrictions of E to different first arguments are independent, it follows that different edges

between vertices in A(t) are independent also. Therefore, conditional on F̂N (t), after
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uniformly random relabelling of the vertices, GN,p,κ,λ(N)(t) has precisely the distribution

of GN (NπN (t), κ + t1) on the set of graphs on [P ] with k types, as required.

Remark. In the definition of GN (p, κ) in Chapter 3, we demanded that each edge be

present with probability 1 − exp(−κi,j/N) rather than κi,j/N . This choice makes the

statement of this proposition simpler.

The aim of this chapter is to give a description of the limit of the processes πN in

Dk([0, ∞)), when pN /N converges in distribution to a constant vector.

5.1.2 Frozen percolation type flows

Definition 5.3. Given a non-negative kernel κ, motivated by Proposition 5.2, we define

a time-dependent kernel for each time t in terms of κ by

κ(t) = κ + t1. (5.1)

Recall from Definition 3.5 that ρ(A) is the Perron root of a positive matrix A, and µ(A)

is the corresponding principal left-eigenvector, normalised so that ∑µi(A) = 1. Also

recall from (3.1) the definitions

Π1 :=

π ∈ Rk
≥0 :

∑
i∈[k]

πi = 1

, Π≤1 :=

π ∈ Rk
≥0 :

∑
i∈[k]

πi ≤ 1

.

Definition 5.4. We say π : [0, ∞) → Rk
≥0\{0} is a frozen percolation type flow with

initial non-negative kernel κ and positive initial measure π(0) ∈ Π≤1 if π is continuous

and there exists some critical time tc ≥ 0 such that:

π(t) = π(0), t ≤ tc, (5.2)

ρ(κ(t) ◦ π(t)) = 1, t ≥ tc, (5.3)

d

dt
π(t) = −µ(κ(t) ◦ π(t))φ(t), t > tc. (5.4)

where φ : (tc, ∞) → R+ is continuous. In addition, we define Φ(t) = ∑k
i=1 πi(t).
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Our main results are:

THEOREM 5.5. We consider κ ∈ Rk×k
≥0 and positive π(0) ∈ Π1. Assume that at least

one of the following holds:

• κ is a positive kernel, and ρ(κ ◦ π(0)) ≤ 1;

• ρ(κ ◦ π(0)) < 1.

Then there exists a unique frozen percolation type flow with initial kernel κ started

from distribution π(0).

Note. Assuming that at least one of the two above conditions holds ensures that κ(tc) is

positive, which in turn ensures that µ(κ(tc) ◦ π(tc)) is well-defined without investigating

further conditions about irreducibility of κ.

It is an easy consequence of (5.1) and (5.3) (that we will explain in Section 5.4) that

Φ(t) → 0 as t → ∞. We can show furthermore that any frozen percolation type flow

has a limiting proportion of types.

THEOREM 5.6. For any frozen percolation type flow with positive π(0), limt→∞
π(t)
Φ(t)

exists, and is positive.

The main theorem, and the motivation for considering frozen percolation type flows, is

the following.

THEOREM 5.7. Fix κ and π(0) satisfying the conditions of Theorem 5.5, and

λ : N → R+ satisfying the usual critical scaling (4.3). Consider a family of multitype

frozen percolation processes GN,pN ,κ,λ(N), such that pN /N
d→ π(0). Then the following

process convergence holds:

πN (·) → π(·),

in distribution with respect to the uniform topology on Dk([0, T ]) as N → ∞ for each

T < ∞, where π is the unique frozen percolation type flow with initial kernel κ started

from distribution π(0).

Remark. The multitype frozen percolation processes exhibit self-organised criticality

in the form of power-law tails for component sizes since they are special cases of Ráth’s
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original mean-field frozen percolation model. However, (5.3) gives an alternative and

slightly simpler interpretation of criticality in this context.

Outline of argument

We prove the uniqueness result of Theorem 5.5 in Section 5.2. We show that for any

solution to (5.4), there is an associated solution to the Smoluchowski equations (4.1),

with the same control function Φ(·). We can then lift Theorem 4.1’s result about

uniqueness of solutions to these equations to the setting we require.

We prove Theorem 5.7 in Section 5.3, from which the existence result of Theorem 5.5

follows. We show tightness of the family of processes (πN ) in Dk([0, T ]). We know from

Theorem 4.2 that ΦN converges to Φ, and we will use this to control the behaviour of

the weak limits of (πN ). We show that any weak limit features critical graphs after

the gelation time, as otherwise Φ is either discontinuous or locally constant, which

contradicts Theorem 4.1. Checking that weak limits π satisfy (5.4) involves a careful

estimate of the number of vertices lost to freezing, using the results obtained in Chapter

3. Finally, we prove Theorem 5.6 in the short Section 5.4.

5.1.3 Motivation - ages in forest fires

We explain briefly how a novel interpretation of the mean-field forest fire process

introduced in Section 1.3.2 motivates the multitype frozen percolation processes studied

in this chapter.

Consider a mean-field forest fire process on [N ], started from the empty graph. At each

time t ≥ 0, some vertices may have been burned some number of times. We associate

with each vertex i ∈ [N ] the process

si(t) = max{s ∈ [0, t] : component containing i struck by lightning at time s}. (5.5)

Here we take max∅ = 0. That is, si(t) tracks the time at which vertex i was most

recently involved in a fire. Now, for some fixed time t ≥ 0 we consider the structure



5.1 Discrete models and a limit object 145

of the graph, conditional on the sequence (s1(t), . . . , sN (t)). This conditioning implies

that each vertex i ∈ [N ] was not struck by lightning on the interval (si(t), t]. In fact, we

can make the following stronger statement, which we justify at the end of this section.

Proposition 5.8. Conditional on (s1(t), . . . , sN (t)), the probability of an edge between

vertices i and j is

1 − exp
[
− t − si(t) ∨ sj(t)

N

]
. (5.6)

Furthermore, the events that distinct edges in [N ](2) are present are independent under

this conditioning.

Remark. In other words, conditional on this sequence of burning times, the graph at

time t is an inhomogeneous random graph, with type-space parameterised by [0, T ].

We then define the following process, recording the empirical distribution of burning

times

πN (t, ·) := 1
N

∑
i∈[N ]

δsi(t)(·). (5.7)

We conjecture the existence and properties of a limit distribution π(t) = limN→∞ πN (t).

This π(t) has a Dirac delta weight at zero, corresponding to the probability that a given

vertex has never been burnt before time t. Given π(t, ·), we can describe the local limit

of the graph of the forest fire process at time t, as a multitype branching process tree

with type space [0, t]. The root has type distributed as π(t, ·), and thereafter, any vertex

with type s has offspring on the type space distributed according to a Poisson random

measure with intensity

Ψ(t, s, u) := π(t, u)(t − s ∨ u).

For any post-gelation time t ≥ Tg we expect the parameters of the inhomogeneous

random graph to be critical. That is, there exists a distribution µ(t, ·) on [0, t] for which

∫ t

0
µ(t, s)Ψ(t, s, u)ds = µ(t, u), u ∈ [0, t],

∫ t

0
µ(t, s)ds = 1,

and which we view as a left-1-eigenfunction for the operator Ψ. Again µ(t, ·) has a Dirac

mass at zero.
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In addition, for t ∈ (Tg, T ], we would expect the burning time distribution π(t, ·) to

evolve according to the following differential equation, analogous to (5.4),

d
dt

π(t, s) = −φ(t)µ(t, s) + φ(t)δt(s), t ∈ [Tg, T ], s ∈ [0, T ]. (5.8)

It can be shown that the stationary solution (1.23) to the modified Smoluchowski

equations (1.22) corresponds to a burning-time distribution on (−∞, 0]. So a result

about existence and uniqueness of solutions to (5.8) analogous to Theorem 5.5 offers a

new approach to outstanding questions of existence and uniqueness for the modified

Smoluchowski equations, for some initial conditions.

However, there are substantial analytic technicalities involved in working with a contin-

uous (and possibly infinite) type-space, hence the motivation for considering the simpler

but related model of frozen percolation with a finite number of types in this chapter.

This approach to the forest fire by considering ages in a continuous typespace is the

subject of ongoing work with Crane and Ráth.

Proof of Proposition 5.8. As in the proof of Proposition 5.2, let E be a Poisson point

process on
([N ]

2
)
× [0, ∞), and L be an independent Poisson point process on [N ]× [0, ∞).

As in the frozen percolation process, we can construct the mean-field forest fire process

on [N ] from a realisation of (E,L). Indeed in this setting, the initial configuration

(recall, the empty graph on [N ]) is deterministic, and so this pair of independent PPPs is

enough to define the forest fire process. (For definiteness, we say that if an edge arrives

at the same time as a lightning strike in (E,L), we add the edge before considering the

effect of the lightning. Obviously the probability that this happens at some time in

[0, T ] is zero for all T > 0.)

We claim the following equality of events, from which the statement of the proposition

will follow rapidly.
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Lemma 5.9. Take σ ∈ [0, t]N , and recall the definition of s(t) = (s1(t), . . . , sN (t)) from

(5.5). Then

{s(t) = σ} =
⋂

i∈[N ]
{si(σi) = σi} ∩

L

 ⋃
i∈[N ]

{i} × (σi, t]

 = 0


∩

E

⋃
i ̸=j

{i, j} × (σi ∧ σj , σi ∨ σj ]

 = 0

. (5.9)

Proof. For brevity, we let B(s(t), σ) be the event on the RHS of (5.9). We start by

showing that {s(t) = σ} ⊆ B(s(t), σ). It is immediately clear that s(t) = σ implies

si(σi) = σi and L({i} × (σi, t]) = 0 for each i ∈ [N ]. It remains to show that the final

event in the intersection which defines B(s(t), σ) holds.

Suppose s(t) = σ, but there exist i ̸= j ∈ [N ] for which E({i, j} × (σi ∧ σj , σi ∨ σj ]) is

positive. If σi = σj then (σi ∧ σj , σi ∨ σj ] = ∅, which contradicts this positivity, and so

without loss of generality we assume σi < σj . Now, since i is not struck by lightning

after time si(t) = σi, and E({i, j} × (σi, σj ]) > 0, the edge formed between i and j has

not been deleted as a result of lightning until time σj . Therefore, when j is involved in

a fire at time σj , so is i, which means si(t) ≥ σj , a contradiction. We have shown that

{s(t) = σ} ⊆ B(s(t), σ).

We now assume that B(s(t), σ) holds. From ∩{si(σi) = σi}, we obtain s(t) ≥ σ. Now

suppose for contradiction that there is some i ∈ [N ] such that si(t) > σi, and we choose

such an i with σi maximal. Let j be the vertex struck by lightning at time si(t), which

causes the fire affecting i. If there is more than one such j, choose any one. (Note

the probability that two vertices are struck by lightning simultaneously is zero.) Since

L({j} × (σj , t]) = 0, we must have σj ≥ si(t) > σi. So by maximality in the choice of i,

we must have σj = sj(t).

Therefore, there is a path of distinct vertices i = i0, i1, . . . , ik = j such that each edge

{im, im+1} is present at time si(t). Since we have si(t) > σi, and sj(t) = σj , there

must exist 0 ≤ m ≤ k − 1 for which sim(t) > σim and sim+1(t) = σim+1 . Now, again by
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maximality in the choice of i, we must have

σim ≤ σi < si(t), and σim+1 = sim+1(t) ≥ si(t),

where the final inequality holds since im+1 is in a fire at time si(t), by construction. In

particular, σim < σim+1 .

The edge {im, im+1} is present at time si(t), but we have assumed sim(σim) = σim , and

so it is not present at time σim . However,

E
(
{im, im+1} × (σim , σim+1 ]

)
= 0 implies E({im, im+1} × (σim , si(t)]) = 0,

so therefore the edge is not added before time si(t). This contradiction shows that

si(t) = σi for all i ∈ [N ]. Therefore we have shown the inclusion relation corresponding

to (5.9) in both directions, and the proof of the lemma is complete.

To finish the proof of Proposition 5.8, note that for all σ ∈ [0, t]N , the event B(s(t), σ)

as defined in (5.9) is certainly independent of E restricted to

⋃
i ̸=j

{i, j} × (σi ∨ σj , t].

In particular, conditional on {s(t) = σ}, the restrictions of E to {i, j} × (σi ∨ σj , t]

remain independent across edges {i, j} ∈ [N ](2). Finally, on {s(t) = σ}, an edge is

present between i and j at time t precisely if

E({i, j} × (σi ∧ σj , t]) > 0,

which from the final term in the intersection on the RHS of (5.9) is, on {s(t) = σ},

equivalent to

E({i, j} × (σi ∨ σj , t]) > 0.

The probability in (5.6) follows immediately, and with the independence that we have

already shown, the proof of Proposition 5.8 is complete.
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5.2 Uniqueness of frozen percolation type flows

In this section, we prove the following proposition.

Proposition 5.10. Consider kernel κ ∈ Rk×k
≥0 and π(0) ∈ Π≤1 satisfying one of the

conditions in Theorem 5.5. Suppose there are frozen percolation type flows π, ν, both

with initial kernel κ started from distribution π(0). Then π = ν.

The proof proceeds by constructing a solution to the Smoluchowski equations (4.1) from

a frozen percolation type flow. We will use Theorem 4.1 to conclude that these are the

same for both π and ν, and in particular, the associated Φs are the same.

In the following lemma, we show that every component of π(t) stays positive for all finite

t ≥ 0. This natural condition avoids the requirement for an awkward case distinction in

the main argument of this section.

Lemma 5.11. Any frozen percolation type flow (π(t))t≥0, with initial kernel κ ∈ Rk×k
≥0

and positive initial distribution π(0) ∈ Π≤1, is positive for all times t ≥ 0.

Proof. We write µ(t) as an abbreviation for µ(κ(t) ◦ π(t)). Also recall the definition

κmax := maxi,j∈[k] κi,j . The result is clear for t ≤ tc. Now suppose that

T := inf{t > tc : ∃i ∈ [k], πi(t) = 0} < ∞.

Observe that T > tc since π(tc) = π(0) and π is continuous. Then consider any t ∈ [tc, T ).

Since ρ(κ(t) ◦ π(t)) = 1 and κ(t) ◦ π(t) is positive, the eigenvector µ(t) is well-defined,

and satisfies

µi(t) = πi(t)
k∑

j=1
µj(t) · (κj,i + t).

So, since πi ≤ 1 and ∑µj = 1, we have

µi(t) ≤ πi(t)[κmax + t],

So from (5.4)
d
dt

π(t) ≥ −π(t) · φ(t)[κmax + t].
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Thus

π(t) ≥ π(tc) exp
(

−
∫ t

tc

[κmax + s]φ(s)ds

)
≥ π(0) exp(−[κmax + t]),

since
∫ t

tc
φ(s)ds = Φ(tc) − Φ(t) ≤ 1. This holds for all t ∈ [tc, T ), and thus

π(T ) ≥ π(0) exp(−[κmax + T ]),

since π is continuous (because π is a frozen percolation type flow).

5.2.1 FP flows give solutions to Smoluchowski’s equations

Given κ ∈ Rk×k
≥0 and π ∈ Π≤1, recall from Definition 3.4 the Poisson branching process

tree with k types Ξπ,κ. Given a frozen percolation type flow with initial kernel κ and

initial measure π, we write Ξ(t) as a shorthand for Ξπ(t),κ(t).

The motivation for introducing branching processes at this point is that, for a family of

processes GN,pN ,κ,λ(N) satisfying the conditions of Theorem 5.7, Ξ(t) is the Benjamini–

Schramm limit (with k types) of GN,pN ,κ,λ(N)(t). In particular, since we are in the

subcritical and critical regimes, the distribution of the size of Ξ(t) is the limit of the

distribution of the size of a component containing a uniformly-chosen (possibly frozen)

vertex in [N ].

We define vℓ(t) := P
(
|Ξ(t)| = ℓ

)
for t ≥ 0, ℓ ≥ 1. We will show that shortly that (v(t))t≥0

satisfies the Smoluchowski equations (4.1). First, we explain how to treat P(|Ξπ,κ| = ℓ)

as a sum over trees. For use in the rest of this section, for any finite set A we define TA

to be the set of unrooted, unordered trees, labelled by A, and we define T ρ
A to be the set

of rooted, unordered trees, again labelled by A.

Lemma 5.12. Let κ ∈ Rk×k
≥0 and π ∈ Π≤1. Then

P(|Ξπ,κ| = ℓ) = 1
ℓ!
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

 ∏
(m,n)∈E(T )

κim,in

 ℓ∏
m=1

πim exp

−
k∑

j=1
κim,jπj

. (5.10)
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Proof. We define ∆i := ∑k
j=1 κi,jπj as we will use this expression frequently. Recall

from Definitions 3.3 and 3.4 that ∆i is the expected number of offspring (of all types)

of a type i parent in Ξκ,π.

To simplify some of the expressions to follow shortly, we will use a slightly different

construction of an inhomogeneous random graph with index N , where the set of vertices

is also random, corresponding to the type sub-distribution π. More formally, we define

a random variable

X1 =


i with probability πi, i ∈ [k]

0 with probability 1 − Φ := 1 −
∑k

i=1 πi,

(5.11)

and let X2, . . . , XN be IID copies of X1. We then construct a random graph G̃N (π, κ),

conditional on (X1, . . . , XN ) as follows. The vertex set is M := {m ∈ [N ] : Xm ̸= 0},

and the type of any i in the vertex set is Xi. Then, (as in the original Definition

3.2 of GN (p, κ)) each edge ij ∈ M (2) is present with probability 1 − exp
(
−κXi,Xj /N

)
,

independently of all other pairs.

Shortly, we will consider the quantities

p̄N,ℓ
i := #{m ∈ [ℓ + 1, N ] : Xm = i}, i ∈ [k], 0 ≤ ℓ ≤ N − 1, (5.12)

associated with a realisation of G̃N (π, κ). We will consider local limits in ḠN (π, κ).

In this setting, we say that |C(1)|, the size of the component containing 1, is zero if

X1 = 0, that is if 1 is not in the vertex set of G̃N (π, κ).

For any ℓ ≤ N , we have

P
(
|C(1)| = ℓ in G̃N (π, κ)

)
=
(

N − 1
ℓ − 1

)
P
(
C(1) = [ℓ] in G̃N (π, κ)

)
=
(

N − 1
ℓ − 1

) ∑
T ∈T[ℓ]

∑
i1,...,iℓ

∈[k]

∏
m∈[ℓ]

πim

∏
(m,n)∈E(T )

(1 − exp(−κim,in/N))

∏
(m,n)∈[ℓ](2)

(m,n) ̸∈E(T )

exp(−κim,in/N) E

 ℓ∏
m=1

k∏
j=1

exp

−
κim,j p̄N,ℓ

j

N


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+ P
(
|C(1)| = ℓ and C(1) includes a cycle in G̃N (π, κ)

)
.

(5.13)

In the first two lines, these products govern, respectively, the probabilities that the

vertices in [ℓ] are present and have types (i1, . . . , iℓ); that the correct edges are present

within [ℓ]; that the correct non-edges are present within [ℓ]; and the expectation (over

random variables (p̄N,ℓ
j )j∈[k]) gives the probability there are no edges between [ℓ] and

[N ]\[ℓ], given the types of vertices [ℓ].

The following convergence results hold immediately, for all i1, . . . , iℓ ∈ [k],

lim
N→∞

∏
(m,n)∈[ℓ](2)

(m,n) ̸∈E(T )

exp(−κim,in/N) = 1, (5.14)

lim
N→∞

(
N − 1
ℓ − 1

) ∏
(m,n)∈E(T )

(1 − exp(−κim,in/N)) = 1
(ℓ − 1)!

∏
(m,n)∈E(T )

κim,in . (5.15)

Now to treat the expectation term in (5.13), we rewrite p̄N,ℓ
j as ∑N

j=ℓ+1 1{Xn=j}, and

recall that (Xn) defined at (5.11) are IID.

E

 ℓ∏
m=1

k∏
j=1

exp

−
κim,j p̄N,ℓ

j

N

 = E

 ℓ∏
m=1

k∏
j=1

N∏
n=ℓ+1

exp
(

−
κim,j1{Xn=j}

N

)
=

N∏
n=ℓ+1

E

 k∏
j=1

ℓ∏
m=1

exp
(

−
κim,j1{Xn=j}

N

)
=

N∏
n=ℓ+1

1 − Φ +
k∑

j=1
πj

ℓ∏
m=1

exp
(

−κim,j

N

)
=

1 − Φ +
k∑

j=1
πj exp

(
−
∑ℓ

m=1 κim,j

N

)N−ℓ

=

1 − Φ +
k∑

j=1
πj

(
1 −

∑ℓ
m=1 κim,j

N
+ O(N−2)

)N−ℓ

=
[
1 −

∑ℓ
m=1 ∆im

N
+ O(N−2)

]N−ℓ

.
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Recalling that ℓ is fixed, we obtain the limit

lim
N→∞

E

 ℓ∏
m=1

k∏
j=1

exp

−
κim,j p̄N,ℓ

j

N

 =
ℓ∏

m=1
exp(−∆im). (5.16)

Finally, we treat the extra term in (5.13), namely the probability that C(1) includes a

cycle. If C(1) includes a cycle and |C(1)| = ℓ, then it includes at least ℓ edges. So we

can bound this probability as

P
(
|C(1)| = ℓ and C(1) includes a cycle in G̃N (π, κ)

)
≤
(N−1

ℓ−1
) (ℓ

2)∑
E=ℓ

((ℓ
2)
E

)(
1 − exp

(
−κmax

N

))E
.

Recall again that ℓ is fixed, so
(N−1

ℓ−1
)

= Θ(N ℓ−1). Each summand has magnitude

Θ(N−E), so

lim
N→∞

P
(
|C(1)| = ℓ and C(1) includes a cycle in G̃N (π, κ)

)
= 0. (5.17)

Combining (5.17) with (5.16), (5.14) and (5.15),

lim
N→∞

P
(
|C(1)| = ℓ in G̃N (π, κ)

)
= 1

(ℓ − 1)!
∑

T ∈T[ℓ]

∑
i1,...,iℓ

∈[k]

 ∏
(m,n)∈E(T )

κim,in


∏

m∈[ℓ]
πim exp(−∆im).

lim
N→∞

P
(
|C(1)| = ℓ in G̃N (π, κ)

)
= 1

ℓ!
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

 ∏
(m,n)∈E(T )

κim,in

 (5.18)

∏
m∈[ℓ]

πim exp(−∆im),

where the second equality holds by considering the natural 1-to-ℓ mapping from T[ℓ] to

T ρ
[ℓ], under which the summands are preserved.

However, we can also treat the LHS of (5.18) using Theorem 9.1 of [15], a local limit

result for IRGs, which we now state in the language of this thesis. First, for any graph

G, let Nℓ(G) be the number of vertices in G which lie in components of size exactly ℓ.
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Then Theorem 9.1 of [15] states that whenever pN /N → π ∈ Π≤1,

1
N

Nℓ

(
GN (pN , κ)

) P→ P(|Ξπ,κ| = ℓ). (5.19)

Although Section 9 of [15] specifically excludes random graphs on what these authors

term generalised vertex spaces, of which G̃N (π, κ) is an example, this is not a major

problem. In G̃N (π, κ), consider the sequence p̄N,0 := (p̄N,0
1 , . . . p̄N,0

k ) as defined in (5.12),

which records the number of vertices of each type present in the graph. Conditional

on p̄N,0, G̃N (π, κ) has the same distribution on the space of graphs with k types, up

to random relabelling of the vertices, as GN (p̄N,0, κ). However, p̄N,0/N converges in

probability to π as N → ∞. Therefore, since by construction Nℓ(G̃N (π, κ))/N ≤ 1

almost surely, we can lift (5.19) to obtain

1
N

Nℓ

(
G̃N (π, κ)

) P→ P(|Ξπ,κ| = ℓ), (5.20)

and indeed this convergence holds in expectation also. But the possible vertices [N ] of

G̃N (π, κ) are exchangeable by construction, and so

E
[
Nℓ

(
G̃N (π, κ)

)]
= NP

(
|C(1)| = ℓ in G̃N (π, κ)

)
.

From this, we obtain

lim
N→∞

P
(
|C(1)| = ℓ in G̃N (π, κ)

)
= P(|Ξπ,κ| = ℓ). (5.21)

Then, by combining (5.13) and (5.21), the required result (5.10) follows immediately.

Now we are in a position to show that (vℓ(t)) constructed from Ξ(π(t),κ(t)) indeed satisfies

the Smoluchowski equations. Recall we use the shorthand Ξ(t) := Ξ(π(t),κ(t) when the

type flow is fixed.

Proposition 5.13. Given (π(t))t≥0 a frozen percolation type flow with initial kernel κ,

set vℓ(t) = P
(
|Ξ(t)| = ℓ

)
as before. Then (v(t))t≥0 satisfies the Smoluchowski equations
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(1.4), with Tg = tc. Furthermore, we have

∞∑
l=1

vl(t) =
k∑

i=1
πi(t), (5.22)

and so it is consistent to call both of these quantities Φ(t).

Proof. We show (5.22) first. We know that ρ(κ(t) ◦ π(t)) ≤ 1, which is precisely the

condition required to conclude P
(
|Ξ(t)| = ∞

)
= 0, as in Proposition 3.7. So

∞∑
ℓ=1

vℓ(t) = 1 − P
(
Ξ(t) = ∅

)
− P

(
|Ξ(t)| = ∞

)

= 1 − P
(
Ξ(t) = ∅

)
=

k∑
i=1

πi(t).

Now we consider the derivatives of vℓ(t). We write µ(t) as a shorthand for µ(κ(t) ◦ π(t)).

We also write ∆i(t) := ∑k
j=1 κi,j(t)πj(t). First we observe that, for t < tc,

d∆i(t)
dt

= 1, ∀i ∈ [k],

and for t > tc,

d∆i(t)
dt

(5.4)=
k∑

j=1
πj(t) − φ(t)

k∑
j=1

κi,j(t)µj(t)

= Φ(t) − φ(t)µi(t)
πi(t)

, i ∈ [k], (5.23)

from the definition of µ(t), and where by Lemma 5.11, πi(t) > 0.

Then, from Lemma 5.12, vℓ(t) is given by:

ℓ!vℓ(t) =
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

 ∏
(m,n)∈E(T )

κim,in(t)

 ℓ∏
m=1

πim(t) exp(−∆im(t)).

We differentiate directly with the product rule, and use (5.4) and (5.23). For brevity,

we set

A(t) :=
ℓ∑

m=1
∆im(t).
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Note that A(t) is a function of i1, . . . , iℓ, though for brevity this dependence is suppressed.

Then, for t > tc,

ℓ! d
dt

vℓ(t) =
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

exp(−A(t))

 ∏
(m,n)∈E(T )

κim,in(t)

[φ(t)
ℓ∑

m′=1

µim′ (t)
πim′ (t)

− ℓΦ(t)
][

ℓ∏
m=1

πim(t)
]

− φ(t)
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

exp(−A(t))

 ∏
(m,n)∈E(T )

κim,in(t)

 ℓ∑
m=1

µim(t)
ℓ∏

m′=1
m′ ̸=m

πim(t)

+
∑

T ∈T ρ
[ℓ]

∑
i1,...,iℓ

∈[k]

exp(−A(t))

 ∑
(m,n)∈E(T )

∏
(m′,n′)∈E(T )
(m′,n′ )̸=(m,n)

κim′ ,in′ (t)


ℓ∏

m=1
πim(t).

(5.24)

The first line comes from differentiating exp(−A(t)) using (5.23); the second line from

differentiating πim(t) using (5.4); and the final line from ∏
(m,n)∈E(T ) κim,in(t) directly.

In the first two lines, the terms involving φ(t) cancel, leaving −ℓ·ℓ!vℓ(t)Φ(t). This applies

equally for t < tc, for which Φ(t) ≡ 1, and for t = tc, as the left- and right-derivatives

match. To deal with the third line, for any t ≥ 0, given T and (m, n) ∈ E(T ), consider

the pair of disjoint trees T m, T n formed by removing the edge (m, n) from T , where

m ∈ T m and n ∈ T n. Then the sum in the third line of (5.24) splits as a product across

these two trees:

∑
T ∈T ρ

[ℓ]

∑
(m,n)∈E(T )

∑
i1,...,iℓ

∈[k]

 ∏
(m′,n′)∈E(T )
(m′,n′) ̸=(m,n)

κim′ ,in′ (t)


ℓ∏

m=1
πim(t) exp(−∆im(t))

=
∑

T ∈T ρ
[ℓ]

∑
(m,n)∈E(T )

 ∑
im′ ∈[k]
m′∈T m

 ∏
(m′,n′)∈E(T m)

κim′ ,in′ (t)

 ∏
m′∈T m

πim′ (t) exp
(
∆im′ (t)

)


×

 ∑
in′ ∈[k]
n′∈T n

 ∏
(m′,n′)∈E(T n)

κim′ ,in′ (t)

 ∏
n′∈T n

πin′ (t) exp
(
−∆in′ (t)

)
. (5.25)

Consider the set of rooted trees on [ℓ] with an identified edge

T[ℓ] :=
{

(T, (m, n)) : T ∈ T ρ
[ℓ], (m, n) ∈ E(T )

}
.
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Recall a rooted forest is a disjoint union of rooted trees. Let T
(2)
[ℓ] be the set of rooted

forests on [ℓ] with exactly two trees. Consider the map from T[ℓ] to T
(2)
[ℓ] given by

removing the identified edge (m, n) from T , and rooting the two resulting trees at m

and n. It is immediately clear that this map is ℓ-to-1, since the root of T plays no role

in the map!

So in (5.25), we may replace the double sum

∑
T ∈T ρ

[ℓ]

∑
(m,n)∈E(T )

with the sum ℓ
∑

T 1⊔T 2

∈T
(2)
[ℓ]

.

Then, by considering which elements of [ℓ] belong to each of the two trees, we can

replace the latter sum with

ℓ

2

ℓ−1∑
r=1

∑
A∈([ℓ]

r )

∑
T 1∈T ρ

A

∑
T 2∈T ρ

[ℓ]\A

,

where recall T ρ
A is the set of rooted graphs labelled by A. Note that in this sum, the 1

2

appears because the order of trees T 1, T 2 does not matter. So we rewrite (5.25) as

ℓ

2

ℓ−1∑
r=1

∑
A∈([ℓ]

r )

 ∑
T 1∈T ρ

A

∑
im′ ∈[k]
m′∈T 1

 ∏
(m′,n′)∈E(T 1)

κim′ ,in′ (t)

 ∏
m′∈T 1

πim′ (t) exp
(
−∆im′ (t)

)


×

 ∑
T 2∈T ρ

[ℓ]\A

∑
in′ ∈[k]
n′∈T 2

 ∏
(m′,n′)∈E(T 2)

κim′ ,in′ (t)

 ∏
n′∈T 2

πin′ exp
(
−∆in′ (t)

)
.

We now relabel the variables inside each large bracket, and move factorials around, to

obtain

ℓ

2 · ℓ!
ℓ−1∑
r=1

 1
r!

∑
T 1∈T ρ

[r]

∑
i1,...,ir

∈[k]

 ∏
(m,n)∈E(T )

κim,in(t)

 r∏
m=1

πim(t) exp(−∆im(t))





158 Frozen percolation with k types

×

 1
(ℓ − r)!

∑
T 2∈T ρ

[ℓ−r]

∑
i1,...,iℓ−r

∈[k]

 ∏
(m,n)∈E(T )

κim,in(t)

 ℓ−r∏
m=1

πim(t) exp(−∆im(t))

,

which is equal to

ℓ! · ℓ

2

ℓ−1∑
r=1

vr(t)vℓ−r(t).

We have already seen that the first two lines of (5.24) are equal to −ℓ · ℓ!vℓ(t)Φ(t).

Therefore, cancelling the ℓ! terms, we conclude from (5.24) that

d
dt

vℓ(t) = ℓ

2

ℓ−1∑
r=1

vr(t)vℓ−r(t) − ℓΦ(t)vℓ(t),

for all t ≥ 0, which is, up to a change of notation, as required.

5.2.2 FP type flows are unique

Now we can finish the proof of Proposition 5.10.

Suppose we have FP type flows π(·) and ν(·), with sums Φπ(·), Φν(·) respectively, and

π(0) = ν(0). So we may consider the associated solutions to the Smoluchowski equations

given by Proposition 5.13, (vπ(·)), (vν(·)). Crucially, π(0) = ν(0) implies vπ(0) = vν(0).

Theorem 4.1 concerning uniqueness of solutions to Smoluchowski’s equations then gives

vπ(t) = vν(t) for all times t ≥ 0. Furthermore, from (5.22), Φπ(t) = Φν(t) for all t ≥ 0,

and tπ
c = tν

c , with φπ(t) = φν(t) for all t ≥ tπ
c .

We may now use the classical technique for verifying uniqueness of solutions to ODEs,

since we have shown in Lemma 3.15 that µ is locally Lipschitz. The flow π(·) satisfies

the integral version of (5.4),

π(t) = π(tc) −
∫ t

tc

µ(κ(s) ◦ π(s))|dΦπ(s)|, t ≥ tc, (5.26)

and similarly for ν(·). So

π(t) − ν(t) =
∫ t

tc

[µ(κ(s) ◦ ν(s)) − µ(κ(s) ◦ π(s))]|dΦ(s)|, t ≥ tc.
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For a fixed time T > tc, by Lemma 5.11, we can choose η > 0 such that πi(T ), νi(T ) ≥ η

for all i ∈ [k]. Now set δ := tc ∧ κmin. From the assumptions we made about the initial

conditions, κi,j(t) ≥ δ > 0 whenever t ≥ tc. So with constant C(δη, κmax + T ) given by

(3.9), for t ∈ [tc, T ],

||µ(κ(t) ◦ π(t)) − µ(κ(t) ◦ ν(t))||1 ≤ C(δη, κmax + T ) max
i,j∈[k]

[κ(t) ◦ π(t) − κ(t) ◦ ν(t)]i,j

≤ C(δη, κmax + T ) · (κmax + T )||π(t) − ν(t)||1.

(5.27)

Therefore, for t ∈ [tc, T ],

||π(t) − ν(t)||1 ≤ C(δη, T + κmax)
∫ t

tc

||π(s) − ν(s)||1φ(s)ds.

We have π(tc) = ν(tc), so applying Gronwall’s Lemma gives π(t) = ν(t) for all t ∈ [tc, T ].

But T was arbitrary, and so in fact we may conclude π(t) = ν(t) for all t ≥ 0. This

completes the proof of Proposition 5.10.

5.3 Proof of Theorem 5.7

We will prove Theorem 5.7 by considering weak limits in Dk([0, T ]) of the sequence of

processes (πN (·)). We will show that the sequence is tight and that any weak limit is a

frozen percolation type flow.

Recall we are given a kernel κ and an initial distribution π(0) satisfying the conditions of

Theorem 5.5, and thus there is a unique frozen percolation type flow (π(t))t≥0 with these

initial conditions. We are also given a family of multitype frozen percolation processes

(GN (t))t≥0. Associated to these is a collection of processes (πN (t))t≥0 recording the

proportion of alive vertices of each type, for which πN (0) d→ π(0) as N → ∞. We also

have (ΦN (t))t≥0 which records the total proportion of alive vertices in GN (t).
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Analogously, we may also define

vN
ℓ (t) := 1

N
#
{

alive vertices in GN (t) with component size ℓ
}

.

Recall the definition of the multitype branching process Ξπ(0),κ, and as in the previous

section, set

vℓ(0) := P
(
|Ξπ(0),κ| = ℓ

)
.

Since GN (0) d= GN (pN , κ), we may use Theorem 9.1 from [15] which asserts that

vN
ℓ (0) d→ vℓ(0), for each ℓ ≥ 1. Then, by Scheffé’s Lemma, we obtain

vN (0) d→ v(0), in ℓ1 as N → ∞.

This is the condition we require to use Theorem 4.2, since (vN
ℓ (·), ℓ ≥ 1) are exactly the

sequence of component-size densities in a family of frozen percolation processes.

In particular, we will use the consequence that ΦN → Φ, uniformly in distribution on

[0, T ]. Recall that Φ(t) = 1 for t ∈ [0, tc], and Φ is strictly decreasing and uniformly

continuous on (tc, ∞). Furthermore, from Proposition 5.13, Φ(t) = ||π(t)||1.

Outline of argument

First we check that the sequence of processes (πN (·)) is tight in Dk([0, T ]), and that every

component of any weak limit is bounded away from zero. We deduce from Theorem 4.2

that weak limits are continuous and after tc are strictly decreasing and critical. We will

argue that supercritical period give rise to jumps, and subcritical periods are locally

constant in the weak limits, and neither of these behaviours is allowed.

Finally, we show that any weak limit satisfies the equation (5.4). Our argument will be

that in the limit the majority of mass is lost as a result of freezing large components,

and the proportion of types within in a large component is well-approximated by the

appropriate left-eigenvector, precisely as shown in Theorem 3.20.
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5.3.1 Tightness and simple properties of weak limits

Throughout this section, we assume T > 0, and that both the initial kernel κ and the

initial distribution π(0) are fixed.

Tightness and Theorem 5.5

Note that each πN is cadlag, and non-increasing, and πN (0) lies in a compact set,

since it satisfies ∑k
i=1 πN

i (0) = 1. It follows that the set of possible trajectories of any

(πN (t))t∈[0,T ] is compact in Dk([0, T ]), and so certainly the sequence of processes (πN (·))

is tight.

Therefore, (πN (·)) has weak limits. The remainder of this proof of Theorem 5.7

establishes that any such weak limit satisfies the conditions of Definition 5.4 to be a

frozen percolation type flow with the correct initial conditions. As a result, the full

statement of Theorem 5.5 follows from Section 5.2 and the proof of Theorem 5.7 to

follow in this section.

Before tc

From now on, let π be any weak limit of (πN ) in Dk([0, T ]) as N → ∞. We will show

that π is the (unique) frozen percolation type flow with initial kernel κ and initial

distribution π(0).

We know that ΦN → 1 on [0, tc]. Therefore, since for each i ∈ [k], πN
i is non-increasing,

the same must be true for each πi. Therefore ∑i∈[k] πN
i (t) → 1 for t ∈ [0, tc] implies

πN (t) → π(t) for the same range of t. In particular, any weak limit π satisfies π(t) = π(0)

for t ∈ [0, tc], as required.

Continuity

Again, we know ΦN → Φ, which is continuous. Any weak limit π must satisfy ||π(t)||1 =

Φ(t) for t ∈ [0, T ], and every component πi(t) is non-increasing with t. Therefore, if
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with positive probability, for some i ∈ [k], πi(·) has a (downward) jump, so does Φ(·).

This is a contradiction, and thus π(·) is almost surely continuous.

Lower bounds on πN (T )

As in the analysis of type flows, in order to use the Lipschitz condition, it is convenient

to show the following lemma, which asserts that the proportion of alive vertices of each

type is bounded below in probability uniformly on compact time intervals.

Lemma 5.14. For any T > 0, there exists η = η(T ) > 0 such that

lim
N→∞

P
(
∃i ∈ [k] s.t. πN

i (T ) < η
)

= 0. (5.28)

Proof. We consider the proportion of isolated alive vertices of type i in the frozen

percolation process, as a lower bound on the proportion of all alive vertices of type

i. We use a second-moment method, under a coupling with the classical Erdős–Rényi

dynamics with no freezing.

Each possible edge carries an exponential clock with parameter 1/N . Because of the

dynamics of the frozen percolation process, sometimes we do not add the edge when

the corresponding clock rings, because at least one of the incident vertices is already

frozen. We say a vertex v is highly isolated at time T if it was isolated in GN (0), and

none of the N − 1 clocks on edges incident to v ring before time T . Certainly if a vertex

is highly isolated, then it is also isolated, provided it is alive.

Let v be a uniformly-chosen vertex in [N ], and let HN
v (T, i) be the event that v has

type i, and is alive and highly isolated at time T in GN (T ). For HN
v (T, i) to hold, v

must be assigned type i; and v must be isolated in the initial graph GN (0); and none

of the N − 1 clocks on edges incident to v may ring before time T ; and v must not be

struck by lightning. So

P
(
HN

v (T, i)
∣∣πN (0)

)
= πN

i (0)

 k∏
j=1

exp
(
−κi,j

[
πN

j (0) − 1
N 1{i=j}

])·
(
e−T/N

)N−1
·e−λ(N)T ,
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and since πN (0) d→ π(0) as N → ∞, we have

P
(
HN

v (T, i)
)

→ πi(0)αi, where αi := exp

−T −
k∑

j=1
[κ ◦ π(0)]i,j

.

Now let v, w be a uniformly chosen pair of distinct vertices in [N ], and let HN
v,w(T, i) be

the event that both v and w have type i, and are alive and highly isolated at time T .

There are 2N − 3 edges in [N ](2) incident to at least one of v and w. Also, conditional

on the initial type distribution, and the event that v and w both have type i, there are

1 + 2[NπN
i (0) − 2] possible edges between one of v and w and some other vertex with

type i. (Note that we avoid double-counting edge vw.) So,

P
(
HN

v,w(T, i)
∣∣πN (0)

)
= πN

i (0)
[
πN

i (0) − 1
N

] k∏
j=1

exp
(
−κi,j

[
2πN

j (0) − 3
N 1{i=j}

])
×
(
e−T/N

)2N−3
· e−2λ(N)T ,

from which as before we have, as N → ∞,

P
(
HN

v,w(T, i)
)

→ πi(0)2α2
i .

Now let HN (T, i) be the number of alive, highly isolated vertices with type i in GN (T ).

We have E
[

HN (T,i)
N

]
→ πi(0)αi and var

(
HN (T,i)

N

)
→ 0.

So for any η ∈ (0, πi(0)αi), applying Chebyshev’s inequality to HN (T,i)
N ,

lim sup
N→∞

P
(
πN

i (T ) < η
)

≤ lim sup
N→∞

P
(

HN (T,i)
N < η

)
≤ lim sup

N→∞

var
(

HN (T,i)
N

)
(πi(0)αi − η)2 = 0.

The statement (5.28) follows by taking η < mini πi(0)αi.

5.3.2 Weak limits are critical after tc

We now show that for any weak limit π, the criticality condition ρ(κ(t) ◦ π(t)) = 1 holds

for all t ≥ tc. We first show that this eigenvalue cannot ever be greater than one, and
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then that it cannot be less than one. In both cases, the argument is by contradiction. If

GN (t) is ever supercritical, then with high probability giant components will be frozen,

and so weak limits of ΦN will not be continuous. If GN (t) is subcritical, then not enough

vertices will be frozen to ensure weak limits of ΦN are strictly decreasing.

Weak limits are never supercritical

Proposition 5.15. For any ϵ > 0,

P
(

sup
t∈[0,T ]

ρ(κ(t) ◦ π(t)) ≥ 1 + ϵ

)
= 0. (5.29)

Proof. The principal eigenvalue ρ(·) is continuous. The kernel κ(·) is continuous, and we

have shown that π(·) is almost surely continuous. On the event {supt∈[0,T ] ρ(π(t)◦κ(t)) ≥

1 + ϵ}, either π has a discontinuity, or there exists a time-interval of positive width,

during which ρ ≥ 1 + ϵ/2. So either (5.29) holds, or there exists a fixed time s ∈ [0, T ),

and an infinite subsequence N ⊆ N such that

lim inf
N→∞
N∈N

P
(
ρ
(
κ(s) ◦ πN (s)

)
≥ 1 + ϵ/2

)
> 0. (5.30)

We assume (5.30) holds, and apply Lemma 3.12. We obtain that there exist M ∈ N and

π(1), . . . , π(M) ∈ Π≤1 and kernels κ(1), . . . , κ(m) ∈ Rk×k
≥0 such that ρ(κ(m)◦π(m)) = 1+ϵ/3,

and for any π ∈ Π≤1 and κ ∈ [0, κmax + T ]k×k with ρ(κ ◦ π) ≥ 1 + ϵ/2, there exists

m ∈ [M ] such that π(m) ≤ π and κ(m) ≤ κ.

Recall that (FN (t))t≥0 is the natural filtration of (πN (t)). In particular, the event

{ρ(κ(s) ◦ πN (s)) ≥ 1 + ϵ/2} is FN (s)-measurable. On this event, at least one of

the events {π(m) ≤ πN (s)} holds. From Proposition 5.2, conditional on FN (s), up

to labelling, GN (s) has the same distribution as GN (NπN (s), κ). Therefore, for any

θ ∈ (0, 1),

P
(
L1
(
GN (s)

)
≥ θN

∣∣∣ ρ(κ(s) ◦ πN (s)) ≥ 1 + ϵ/2
)

≥ min
m∈[M ]

P
(
L1
(
GN (⌊Nπ(m)⌋, κ(m))

)
≥ θN

)
, (5.31)



5.3 Proof of Theorem 5.7 165

where the floor function is applied component-wise. However, for each m ∈ [M ],

Theorem 3.8 controls the asymptotic size of the largest component in the family of

graphs on the RHS. That is, as N → ∞,

1
N

L1
(
GN ((⌊Nπ(m)⌋, κ(m))

)
d→ P

(
|Ξπ(m),κ(m) | = ∞

)
,

for each m ∈ [M ], and furthermore this limit is equal to ∑i∈[k] πiζ
π(m),κ(m)

i , which is

positive. We take θ > 0 satisfying

θ < min
m∈[M ]

P
(
|Ξπ(m),κ(m) | = ∞

)
.

Returning to (5.31) with this value of θ, we find

lim
N→∞

P
(
L1
(
GN (s)

)
≥ θN

∣∣∣ ρ(κ(s) ◦ πN (s)) ≥ 1 + ϵ/2
)

= 1.

So, if (5.30) holds, we have

lim inf
N→∞
N∈N

P
(
L1
(
GN (s)

)
≥ θN

)
> 0.

Conditional on the event
{

L1
(
GN (s)

)
≥ θN

}
, the probability that this largest compo-

nent is not struck by lightning before any fixed time s′ > s vanishes as N → ∞, since

the lightning rate λ(N) ≫ 1
N . So

lim inf
N→∞
N∈N

P
(
ΦN (s+) ≤ ΦN (s) − θ

)
> 0,

and so the same holds for the limit. That is,

P(Φ(s+) ≤ Φ(s) − θ) > 0,

which contradicts the almost sure continuity of any weak limit Φ. (5.29) then follows

by contradiction.
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Weak limits are not subcritical after tc

We start with a lemma concerning the expected size of the component of a uniformly-

chosen vertex in a subcritical inhomogeneous random graph. The final step includes

a bound which is rather weak, but will be sufficient for the main proposition which

follows.

Lemma 5.16. Fix N ∈ N, p ∈ Nk
0 and κ ∈ Rk×k

≥0 satisfying ρ(κ ◦ p/N) < 1. Let C(v)

be the component containing a uniformly chosen vertex in GN (p, κ). Then

E[|C(v)|] ≤ 1
κmin||π||1

· ρ(κ ◦ π)
1 − ρ(κ ◦ π) ,

where κmin := mini,j∈[k] κi,j , and π := p/N .

Proof. Set π̄ := π/||π||1 = p/||p||1. Recall Ξ̄π,κ, from Definition 3.17, the multitype

branching process where the root exists with probability one, and has type distribution

given by π̄. From Proposition 3.18, E[|C(v)|] ≤ E
[
|Ξ̄p/N,κ|

]
= E

[
|Ξπ̄,κ|

]
. Now consider

the multitype branching process tree Ξ̂π̄,κ, where the type of the root is given instead

by the distribution µ(κ ◦ π), and the offspring distributions are the same as for Ξπ,κ

and Ξ̄π,κ. By considering the number of offspring at each generation of Ξ̂π,κ we have

E
[
|Ξ̂π,κ|

]
= 1 + ρ(κ ◦ π) + ρ(κ ◦ π)2 + . . . = 1

1 − ρ(κ ◦ π) .

However, the distribution of Ξ̄π,κ conditional on the root having type i is the same as

the distribution of Ξ̂π,κ conditional on the root having type i. Therefore, by the law of

total expectation,

E
[
|Ξ̄π,κ|

]
≤ max

i∈[k]

πi/||π||1
µi(κ ◦ π)E

[
|Ξ̂π,κ|

]
.

However, since µ(κ ◦ π) is a left-eigenvector, we have

µj(κ ◦ π)
πj

= 1
ρ(κ ◦ π)

k∑
i=1

µi(κ ◦ π)κi,j ≥ κmin
ρ(κ ◦ π) , j ∈ [k],

and the result follows immediately.
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Proposition 5.17. For any ϵ > 0,

P
(

sup
t∈[tc,T ]

ρ(π(t) ◦ κ(t)) ≤ 1 − ϵ

)
= 0. (5.32)

Proof. By the same argument as in Proposition 5.15, either (5.32) holds, or there exists

s ∈ [tc, T ) and an infinite subsequence N ⊆ N such that

lim inf
N→∞
N∈N

P
(
ρ
(
κ(s) ◦ πN (s)

)
≤ 1 − ϵ/2

)
> 0.

Now, we can choose δ > 0 such that s + δ < T and

κi,j(s + δ)
κi,j(s) ≤ 1 − ϵ/3

1 − ϵ/2 , ∀i, j ∈ [k].

Since ρ(·) is increasing as a function of each entry of its argument (Corollary 3.11),

lim inf
N→∞
N∈N

P
(
ρ
(
κ(s + δ) ◦ πN (s)

)
≤ 1 − ϵ/3

)
> 0. (5.33)

We now consider how many vertices are frozen during the time-interval [s, s + δ], in

expectation. By construction of the lightning processes, and Proposition 5.2, for any

t > 0, it is the case that conditional on FN (t−) and the event that an alive vertex is

struck by lightning at time t, the number of vertices frozen
[
ΦN (t−) − ΦN (t)

]
has the

same law as |C(1)| in the IRG GN (NπN (t−), κ(t)). In particular, in our setting, for

any lightning strike on an alive vertex at time s′ ∈ [s, s + δ],

E
[
ΦN (s′−) − ΦN (s′)

∣∣∣FN (s′−), ΦN (s′−) − ΦN (s′) > 0
]

≤ 1
N

E
[
|C(1)| in GN (NπN (s′−), κ(s′))

∣∣∣FN (s′−)
]

≤ 1
N

E
[
|C(1)| in GN (NπN (s), κ(s + δ))

∣∣∣FN (s′−)
]
,

almost surely, since |C(1)| is an increasing function of the graphs. But the quantity in

the final expectation is actually FN (s)-measurable, and so

E
[
ΦN (s′−) − ΦN (s′)

∣∣∣FN (s′−), ΦN (s′−) − ΦN (s′) > 0
]
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≤ 1
N

E
[
|C(1)| in GN (NπN (s), κ(s + δ))

∣∣∣FN (s)
]
.

In particular, this upper bound is independent of behaviour on the interval [s, s′). The

process recording all lightning strikes on alive vertices is dominated by a Poisson process

with rate Nλ(N), so we obtain

E
[
ΦN (s) − ΦN (s + δ)

∣∣∣FN (s)
]

≤ δλ(N)E
[
|C(1)| in GN (NπN (s), κ(s + δ))

∣∣∣FN (s)
]
.

(5.34)

Using Lemma 5.16, the expectation of this component size conditional on FN (s) is at

most
1

δ||πN (s)||1
·

ρ
(
κ(s + δ) ◦ πN (s)

)
1 − ρ(κ(s + δ) ◦ πN (s)) ,

almost surely. Consider η as given by Lemma 5.14, and define the event

AN :=
{

ρ
(
κ(s + δ) ◦ πN (s)

)
≤ 1 − ϵ/3, ΦN (s) ≥ kη

}
,

which is certainly FN (s)-measurable. By (5.28) and (5.33), as N ∋ N → ∞, lim inf P
(
AN

)
>

0. But then using (5.34) we have

E
[
ΦN (s) − ΦN (s + δ)

∣∣∣AN
]

≤ 1
kδη

· 3
ϵ

· δλ(N) ≪ 1.

It follows by the law of total probability and by Markov’s inequality that for any θ > 0,

lim inf
N→∞
N∈N

P
(
ΦN (s) − ΦN (s + δ) ≤ θ

)
> 0,

and so

P(Φ(s) − Φ(s + δ) = 0) > 0,

which contradicts the requirement that any weak limit Φ is almost surely strictly

decreasing on [tc, T ].
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We have shown that any weak limit π is continuous, and satisfies ρ(κ(t) ◦ π(t)) = 1 for

t ≥ tc, and satisfies π(t) = π(0) for t ≤ tc. Thus we have shown that (5.2) and (5.3)

hold.

5.3.3 Asymptotic proportions of types of frozen vertices

To complete the proof of Theorem 5.7 it remains to show that any weak limit satisfies

(5.4).

Weak convergence towards integral equation

Throughout this final section, κ is fixed, and so κ(t) is fixed for all t ≥ 0. To emphasise

this, and for brevity, we will write µ(t, π(t)) for µ(κ(t) ◦ π(t)) here.

Suppose we have

sup
t∈[tc,T ]

∣∣∣∣∣∣∣∣πN (tc) − πN (t) +
∫ t

tc

µ(s, πN (s−))dΦN (s)
∣∣∣∣∣∣∣∣

1

P→ 0, (5.35)

as N → ∞. We will show that this is a sufficient requirement for any weak limit π(·)

to satisfy the following integral version of the differential equation (5.4) governing the

evolution of the type distribution:

π(tc) − π(t) +
∫ t

tc

µ(s, π(s))dΦ(s) = 0, t ∈ [tc, T ]. (5.36)

This is sufficient for (5.4) since Φ is differentiable on (tc, ∞), and µ(s, π(s)) is almost

surely continuous. We have ΦN → Φ uniformly on [0, T ], and again let π(·) be a weak

limit of πN (·) along the subsequence N ⊆ N. Since π(·) and κ(·) are continuous, µ(·, π(·))

is uniformly continuous on [0, T ]. Therefore

sup
t∈[tc,T ]

∣∣∣∣∣∣∣∣∫ t

tc

µ(s, π(s))d
[
ΦN (s) − Φ(s)

]∣∣∣∣∣∣∣∣
1

P→ 0,
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as N → ∞. To conclude (5.36) from (5.35), it remains to show that

sup
t∈[tc,T ]

∣∣∣∣∣
∣∣∣∣∣
∫ T

tc

[
µ(s, πN (s−)) − µ(s, π(s))

]
dΦN (s)

∣∣∣∣∣
∣∣∣∣∣
1

P→ 0, (5.37)

as N ∋ N → ∞. But certainly for any t ∈ [tc, T ] we have

∣∣∣∣∣∣∣∣∫ t

tc

[
µ(s, πN (s−)) − µ(s, π(s))

]
dΦN (s)

∣∣∣∣∣∣∣∣
1

≤
∫ T

tc

∣∣∣∣∣∣µ(s, πN (s−)) − µ(s, π(s))
∣∣∣∣∣∣

1
dΦN (s).

Consider η > 0 as given by Lemma 5.14. It follows directly from (5.28) that

P(∃i ∈ [k] s.t. πi(T ) < η) = 0.

Conditional on πN
i (s−) ≥ η for all i ∈ [k], Lemma 3.15 gives, as in (5.27),

∣∣∣∣∣∣µ(s, πN (s−)) − µ(s, π(s))
∣∣∣∣∣∣

1
≤ (κmax + T )C

(
η(tc ∨ κmin), κmax + T

)
||πN (s−) − π(s)||1.

Therefore, writing C for (κmax + T )C
(
η(tc ∨ κmin), κmax + T

)
, on the event

{πN
i (T ) ≥ η, ∀i ∈ [k]},

∣∣∣∣∣∣∣∣∫ t

tc

[
µ(s, πN (s−)) − µ(s, π(s))

]
dΦN (s)

∣∣∣∣∣∣∣∣
1

≤ C

∫ T

tc

||πN (s−) − π(s)||1dΦN (s).

As N ∋ N → ∞, both πN → π, and ΦN → Φ uniformly in distribution on [0, T ], so the

RHS vanishes in probability. By Lemma 5.14, P
(
πN

i (T ) ≥ η ∀i ∈ [k]
)

→ 1. Thus (5.37)

follows, and we may conclude (5.36) from (5.35). It remains to show (5.35). We will

show (5.35) in the next section, after a preliminary result.

A result about coupled processes

First, we show a result about coupled processes which we will use to finish this proof.

The motivation for the setup is the following. Every time a component is frozen in the

multitype frozen percolation process, the distribution of types in this frozen component

is not exactly the same as the left-eigenvector of the appropriate kernel, but the difference

is close to zero so long as the component is fairly large. The expression on the LHS of
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(5.35) records the accumulation of this error. Each time ΦN has a downward jump, the

expected extra error accumulated is small relative to the expected size of the jump of

ΦN . The following result will show that this is enough to conclude that the total error

is small in probability, uniformly in time.

For some N ∈ N, consider (ξm)0≤m≤N and (Ym)0≤m≤N , R-valued processes adapted

to a filtration F = (Fm)0≤m≤N . We will assume that ξ0 = Y0 = 0, and that (ξm) is

non-decreasing. We will assume also that ξN ≤ 1, and that for some δ ∈ (0, 1) and

K ∈ N,

|Ym+1 − Ym| ≤ ξm+1 − ξm ≤ 1
K2 , a.s. m = 0, 1, . . . , N − 1, (5.38)

and
∣∣E[Ym+1 − Ym|Fm]

∣∣ ≤ δE[ξm+1 − ξm|Fm], a.s. m = 0, 1, . . . , N − 1. (5.39)

That is, the increments of ξ are bounded, and dominate the increments of Y . Furthermore

the increments of Y have smaller expectation than those of ξ, uniformly in time and

the history of the process.

Lemma 5.18. Whenever (5.38) and (5.39) hold, we have:

E
[

sup
0≤m≤N

|Yn|
]

≤ 2
K

+ δ. (5.40)

Proof. We consider the Doob–Meyer decomposition of the process (Ym). That is,

W0 := 0, Wm+1 := Wm + Ym+1 − E
[
Ym+1

∣∣Fm
]
, m ≥ 0,

A0 := 0, Am+1 := Am + E
[
Ym+1 − Ym

∣∣Fm
]
, m ≥ 0,

for which (Wm) is an F-martingale, and (Am) is a predictable process, and Ym =

Wm + Am. All the statements which follow hold almost surely. First we consider (Am).

Using (5.39), we have

|Am+1 − Am| ≤ δE
[
ξm+1 − ξm

∣∣Fm
]
,
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from which,

E
[

sup
0≤m≤N

|Am|
]

≤ E
[

N−1∑
m=0

|Am+1 − Am|
]

≤ δE[ξN ] ≤ δ. (5.41)

Now we turn to (Wm). Certainly, for any 0 ≤ m ≤ N − 1, conditional on Fm,

Wm+1 − Wm = Ym+1 − Ym − E
[
Ym+1 − Ym

∣∣Fm
]
,

and so

E
[
(Wm+1 − Wm)2

∣∣∣Fm

]
≤ E

[
(Ym+1 − Ym)2

∣∣∣Fm

]
.

Using (5.38), for any 0 ≤ m ≤ N − 1,

E
[
(Wm+1 − Wm)2

∣∣∣Fm

]
≤ E

[
(ξm+1 − ξm)2

∣∣∣Fm

]
≤ 1

K2E
[
ξm+1 − ξm

∣∣Fm
]
.

Then, since (Wm) is a martingale bounded in L2, by orthogonality of increments (see

§12.1 of [71]),

E
[
W 2

N

]
=

N−1∑
m=0

E
[
(Wm+1 − Wm)2

]
≤ 1

K2

N−1∑
m=0

E[ξm+1 − ξm] ≤ 1
K2 ,

since ξN ≤ 1. Finally, using Doob’s L2 inequality,

E
[

sup
0≤m≤N

|Wm|
]

≤

√√√√E
[

sup
0≤m≤N

W 2
m

]
≤
√

4E
[
W 2

N

]
≤ 2

K
. (5.42)

Since Ym = Wm + Am, it follows immediately from (5.41) and (5.42) that

E
[

sup
0≤m≤N

|Ym|
]

≤ 2
K

+ δ,

as required.
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5.3.4 Decomposition via freezing times

We now prove (5.35), which is equivalent to

sup
t∈[tc,T ]

∣∣∣∣∣∣∣∣∫ t

tc

[
µ(s, πN (s−))dΦN (s) − dπN (s)

]∣∣∣∣∣∣∣∣
1

P→ 0. (5.43)

To address this, we categorise each frozen vertex by its type and by its distance from

the associated vertex which was struck by lightning. This will allow us to use the results

shown in Section 3.3. In the process GN , for each vertex v ∈ [N ], say sv is the time at

which v is frozen, as a result of some vertex w being struck by lightning. (Note that w

is possibly v itself.) Define d(v) = d(v, w) to be the graph distance in GN (sv) between v

and w.

We now define for each i ∈ [k] and any r ∈ {0, 1, . . . , N − 1},

ΨN (r, i, t) = 1
N

#{v ∈ [N ] : type(v) = i, sv ∈ [0, t] and d(v) = r}. (5.44)

Also define ΨN (r, t) := ∑k
i=1 ΨN (r, i, t), that is, the total proportion of vertices of any

type frozen up to time t which were distance r from the vertex struck by lightning. We

have
N−1∑
r=0

dΨN (r, s) = −dΦN (s),
N−1∑
r=0

dΨN (r, i, s) = −dπN
i (s),

and so (5.43) is further equivalent to

sup
t∈[tc,T ]

∣∣∣∣∣
∫ t

tc

N−1∑
r=0

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]∣∣∣∣∣ P→ 0, ∀i ∈ [k],

as N → ∞. Therefore, to prove (5.35) and complete the proof of Theorem 5.7 it will

suffice to show the following lemma.

Lemma 5.19. For each type i ∈ [k],

lim
N→∞

E
[

sup
t∈[tc,T ]

∣∣∣∣∣
∫ t

tc

N−1∑
r=0

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]∣∣∣∣∣
]

= 0. (5.45)
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Proof. Throughout the proof, we fix i ∈ [k]. We start by showing that small values of r

do not contribute on this scale in the limit. Fix some R ∈ N. Then, at any time t ≤ T ,

the expected number of vertices within distance R − 1 of a uniformly chosen alive vertex

in GN (t) is at most

1 +
[
N(1 − e−(κmax+T )/N )

]
+ . . . +

[
N(1 − e−(κmax+T )/N )

]R−1
.

Therefore

E
[

R−1∑
r=0

ΨN (r, T )
]

≤ 1
N

·[λ(N)N ]T
[
1 +

[
N(1 − e−(κmax+T )/N )

]
+ . . . +

[
N(1 − e−(κmax+T )/N )

]R−1
]
,

and from the assumptions about λ(N), it is clear that this vanishes as N → ∞.

So it remains to show that,

lim
N→∞

E
[

sup
t∈[tc,T ]

∣∣∣∣∣
∫ t

tc

N−1∑
r=R

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]∣∣∣∣∣
]

= 0, (5.46)

for a fixed value of R ∈ N to be chosen shortly.

Recall that (FN (t))t≥0 is the natural filtration of the random type flow process πN . We

now define (F̄N (t))t≥0 to be the natural filtration of the collection of processes

πN (·) and ΨN (r, i, ·), for all r ≥ 0, i ∈ [k].

Note that, in a multitype frozen percolation process, conditional on the set of alive

vertices and their types at time t, the graph structure of the frozen vertices is independent

of GN (t), the graph with types on alive vertices. So, although this filtration (F̄N ) is

finer than (FN ), Proposition 5.2 remains true after replacing conditioning on FN (t)

with conditioning on F̄N (t).

We now use some notation from Chapter 3 and Theorem 3.20. Recall that for some

vertex v in some multitype graph G, we let W ≥R
i be the number of type i vertices in

G at distance at least R from v. Now, for each s ∈ [0, T ], and R ∈ {0, . . . , N − 1},

conditional on F̄N (s−) and the event that there is a lightning strike at time s, the



5.3 Proof of Theorem 5.7 175

distribution of ∑N−1
r=R

(
ΨN (r, s) − ΨN (r, s−)

)
is the same as the distribution of W ≥R

corresponding to a uniformly-chosen vertex in GN (NπN (s−), κ(s)).

We take τ0 := tc, and let the times that lightning strikes an alive vertex after tc be

tc < τ1 < τ2 < . . .. Set α := max{m : τm ≤ T} to be the number of such lightning

strikes until time T . Since τ1, . . . , τα are precisely those times t ∈ (tc, T ] for which

πN (t−) − πN (t) > 0, each τm is an (FN )-stopping time, and thus an (F̄N )-stopping

time too. Now consider for m = 0, 1, . . . , α, the discrete process

Y N
m :=

∫ τm

tc

N−1∑
r≥R

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]
,

=
m∑

ℓ=1

µi(τℓ, πN (τi−))

∑
r≥R

ΨN (r, τℓ) −
∑
r≥R

ΨN (r, τℓ−)


−

∑
r≥R

ΨN (r, i, τℓ) −
∑
r≥R

ΨN (r, i, τℓ−)

.

Then (Y N
m )0≤m≤α is adapted to

(
F̄N (τm)

)
0≤m≤α

, and records the accumulation of error

between the true proportion of types lost beyond radius R, and the proportion expected

from the left-eigenvectors, as successive components are frozen.

We also define, for m = 0, 1, . . . , α,

ξN
m :=

∫ τm

tc

∑
r≥R

dΨN (r, s) =
m∑

ℓ=1

∑
r≥R

ΨN (r, τℓ) −
∑
r≥R

ΨN (r, τℓ−)

,

the discrete process recording the proportion of mass lost beyond radius R after successive

lightning strikes. This process (ξN
m)0≤m≤α is also adapted to

(
F̄N (τm)

)
0≤m≤α

.

We will now compare the increments of Y N and the increments of ξN in expectation using

Theorem 3.20. In particular, we will need to exclude the possibility that any component

of πN becomes too small, or that ρ(πN (t) ◦ κ(t)) becomes too large. Furthermore, to

apply Lemma 5.18 we will have to ignore increments where the total mass lost is too

large. All of these events happen with vanishing probability, and the quantities under

consideration are uniformly bounded. Rather than condition that none of these events
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occur (which would affect the individual increments), we will exclude any pathological

behaviour step-by-step for each freezing event, so as to preserve the Markov property.

Recall the definition of η from Lemma 5.14. Set η′ = min(η, κmin ∨ tc) > 0. Choose

some δ ∈ (0, 1), and consider ϵ = ϵ(δ, η′, T + κmax), R = R(δ, η′, T + κmax) as defined in

Theorem 3.20. Consider the events

ΘN,η′,ϵ
m :=

{
πN

j (τm−) ≥ η′, ∀j ∈ [k], sup
t∈[0,τm)

ρ(πN (t) ◦ κ(t)) ≤ 1 + ϵ

}
,

each of which is FN (τm−)-measurable, and thus also F̄N (τm)-measurable. On the event

ΘN,η′,ϵ
m , the graphs GN (s) satisfy the conditions of Theorem 3.20 for all s ∈ [0, τm). Note

that

ΘN,η′,ϵ
1 ⊃ . . . ⊃ ΘN,η′,ϵ

α ⊃ ΘN,η′,ϵ :=
{

πN
j (T ) ≥ η′, ∀j ∈ [k], sup

t∈[0,T ]
ρ(πN (t) ◦ κ(t)) ≤ 1 + ϵ

}
.

We know from (5.28) and (5.29) that

lim
N→∞

P
(
ΘN,η′,ϵ

)
= 1.

We also have χ = χ(ϵ, η′) given by Theorem 3.9. We define

ξN,χ
m :=

m∑
ℓ=1

1{ξN
ℓ

−ξN
ℓ−1≤χ}

(
ξN

ℓ − ξN
ℓ−1

)
, m = 0, 1, . . . , α,

which counts the proportion of vertices frozen from beyond radius R, ignoring those

occasions when the number of such vertices is greater than χN . (Recall that ξN has been

rescaled like ΦN , so that losing more than χN vertices beyond radius R corresponds to

ξN
ℓ − ξN

ℓ−1 > χ.) Analogously, we define

Y N,χ
m :=

m∑
ℓ=1

1{ξN
ℓ

−ξN
ℓ−1≤χ}1ΘN,η′,ϵ

ℓ

(
Y N

ℓ − Y N
ℓ−1

)
, m = 0, 1, . . . , α,

which describes the accumulation of error in (5.35) when components of size at most

χN are frozen, and when the graph satisfies the conditions for Theorem 3.20. Observe
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that α ≤ N by construction, so we also define

ξN,χ
m = ξN,χ

α , Y N,χ
m = Y N,χ

α , m = α + 1, . . . , N.

This pair of processes (ξN,χ, Y N,χ) is adapted to the filtration HN = (HN
m)0≤m≤N

defined by HN
m := F̄N (τm+1−), for m < α and HN

m = F̄N (τα) for m ≥ α. Observe that

ξN,χ is non-decreasing and

∣∣∣Y N,χ
m+1 − Y N,χ

m

∣∣∣ ≤ ξN,χ
m+1 − ξN,χ

m ≤ χ.

Furthermore, on ΘN,η′,ϵ
m+1 (which is HN

m-measurable),

ξN,χ
m+1 − ξN,χ

m

∣∣∣HN
m

d= W ≥R1Aχ ,

where Aχ = {||W ≥R|| ≤ χN}, with the IRG taken to be GN (NπN (τm+1−), κ(τm+1)).

Similarly, again on ΘN,η′,ϵ
m+1 ,

Y N,χ
m+1 − Y N,χ

m

∣∣∣HN
m

d= W ≥R
i 1Aχ − µi(τm+1, πN (τm+1−))W ≥R1Aχ .

On (ΘN,η′,ϵ
m+1 )c, the increment Y N,χ

m+1 − Y N,χ
m

∣∣∣HN
m is zero. Therefore, taking expectations

and applying Theorem 3.20, we obtain

∣∣∣E[Y N,χ
m+1 − Y N,χ

m

∣∣HN
m

]∣∣∣ ≤ δE
[
ξN,χ

m+1 − ξN,χ
m

∣∣HN
m

]
, a.s., m ≥ 0.

Thus, for K = ⌊
√

1
χ⌋, the processes ξN,χ and Y N,χ precisely satisfy the conditions for

Lemma 5.18. On the event ΘN,η,ϵ,

sup
t∈[tc,T ]

∣∣∣∣∣
∫ t

tc

N−1∑
r=R

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]∣∣∣∣∣ = sup
0≤m≤N

∣∣∣Y N
m

∣∣∣.
Therefore, by Lemma 5.18

lim sup
N→∞

E
[

sup
t∈[tc,T ]

∣∣∣∣∣
∫ t

tc

N−1∑
r=R

[
µi(s, πN (s−))dΨN (r, s) − dΨN (r, i, s)

]∣∣∣∣∣
]
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≤ 2K−1 + δ + lim sup
N→∞

2(1 − P
(
ΘN,η′,ϵ

)
) = 2K−1 + δ.

Our choice of δ was arbitrary, but as we take δ → 0, we may assume ϵ → 0 and thus, by

Theorem 3.9, χ → 0 also. Hence K → ∞. So (5.46) and (5.45) follow, and the proof of

Lemma 5.19, and Theorem 5.7 is complete.

5.4 Limits in time for frozen percolation type flows

It is natural to ask about the behaviour of a frozen percolation type flow as t → ∞.

First, we give a quick argument why Φ(t) → 0 as t → ∞. From the criticality condition

(5.3) and Corollary 3.11, for t ≥ tc,

1 = ρ(κ(t) ◦ π(t)) ≥ ρ(t1 ◦ π(t)) = tρ(1 ◦ π(t)).

Therefore ρ(1 ◦ π(t)) ≤ 1/t. But note that (1, . . . , 1)T is a right-eigenvector of 1 ◦ π(t),

with eigenvalue Φ(t). Therefore

Φ(t) ≤ 1/t. (5.47)

Now we prove that the proportion of types among the alive vertices converges as t → ∞.

Proposition 5.20. For any frozen percolation type flow π, limt→∞
π(t)
Φ(t) exists and is

positive.

Proof. Directly from (5.4), d
dtΦ(t) = −φ(t). Therefore

d
dt

(
π(t)
Φ(t)

)
(5.4)= φ(t)

Φ(t)

(
π(t)
Φ(t) − µ((κ + t1) ◦ π(t))

)
.

Note that π(t)
Φ(t) = µ(t1 ◦ π(t)), and so

d
dt

(
π(t)
Φ(t)

)
= φ(t)

Φ(t)
[
µ(t1 ◦ π(t)) − µ((κ + t1) ◦ π(t))

]
. (5.48)
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Consider the sets of positive matrices

A := {t1 ◦ π(t) : t ≥ tc}, B := {(κ + t1) ◦ π(t) : t ≥ tc}.

Now, for any A ∈ A ∪ B,

Ai,j ≤ (κmax + t)πj(t) ≤ (κmax + t)Φ(t) ≤ κmax
tc

+ 1,

where the final inequality follows from (5.47). Hence matrices in A ∪ B are bounded in

Rk×k
≥0 and thus the closure A ∪ B is compact. Any matrix in A ∪ B has the property that

any row has either all positive entries, or all zero entries, and at least one row has all

positive entries. Thus the Perron root of any matrix in A ∪ B is a simple eigenvalue, and

Lemma 3.15 applies, with A = A ∪ B. In particular, there exists a constant C = C(A)

(depending on κ and π(0)) such that

||µ(A) − µ(B)||1 ≤ C max
i,j∈[k]

|Ai,j − Bi,j |, A, B ∈ A ∪ B.

So from (5.48),

∣∣∣∣∣∣∣∣ d
dt

(
π(t)
Φ(t)

)∣∣∣∣∣∣∣∣
1

≤ C · φ(t)
Φ(t) · max

i,j
κi,jπj(t) ≤ Cφ(t)κmax.

Therefore, if we write g(t) := d
dt

(
π(t)
Φ(t)

)
, we have

∫ ∞

tc

||g(t)||1dt ≤ Cκmax

∫ ∞

tc

φ(t)dt ≤ CκmaxΦ(0) < ∞,

and it follows that π(t)
Φ(t) converges as t → ∞.

We now show that the limit is positive. For this, we will use a similar argument to the

proof of Lemma 5.14, but now using the statement of Theorem 5.7 to give stronger

bounds involving Φ.

Recall that π(0) and κ are fixed. Now, for each N ∈ N, we take N IID samples from π(0),

and let pN ∈ Nk
0 be the vector recording the number of occurences of each type. Clearly,
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by WLLN pN /N
d→ π(0) as N → ∞. We will consider coupling frozen percolation

processes with initial types given by pN , as N varies.

Fix some sequence (λ(N)) satisfying the critical scaling 1/N ≪ λ(N) ≪ 1. Observe

that there is a natural coupling between the processes GN,pN ,κ,λ(N) and GN+1,pN+1,κ,λ(N)

under which the restriction of the latter to vertex set [N ] is equal to the former until

the first time an edge is added between N + 1 and an alive vertex in [N ]. (This time

might be zero, if there is such an edge in the initial graph GN+1,pN+1,κ,λ(N).) We fix

a time T > 0. Theorem 5.7 applies to both sequences of processes (GN,pN ,κ,λ(N)) and

(GN+1,pN+1,κ,λ(N)), since certainly λ(N − 1) also satisfies the critical scaling. While this

theorem is stated in terms of convergence in probability, it also holds in expectation

since the processes πN are uniformly bounded in Rk. Thus, for each i ∈ [k],

πi(T ) = lim
N→∞

E
[
πN+1

i (T )
]

= lim
N→∞

P
(
type(N + 1) = i, N + 1 alive in GN+1,pN+1,κ,λ(N)(T )

)
.

Although it leads to a weaker bound, it is more convenient to consider the probability

that vertex N + 1 is both alive and isolated in GN+1,pN+1,κ,λ(N)(T ). This event is

particularly tractable under the coupling proposed above. For, as long as N + 1 is

isolated, an edge forms between N + 1 and [N ] at rate 1
N #{alive vertices in [N ]}. So,

if ΦN (t) remains the proportion of alive vertices in GN,pN ,κ,λ(N), we can control the

probability that N + 1 remains isolated in GN+1,pN+1,κ,λ(N) conditional on the evolution

of GN,pN ,κ,λ(N). That is,

P
(
N + 1 alive and isolated in GN+1,pN+1,κ,λ(N)(T )

∣∣∣GN,pN ,κ,λ(N)∣∣
[0,T ]

)
= P

(
N + 1 isolated in GN+1,pN+1,κ,λ(N)(0)

)
× P(N + 1 not struck by lightning on [0, T ]) × exp

(
−
∫ T

0
ΦN (s)ds

)
.
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Since the second and third probabilities are independent of the type of N + 1, we can

include this in the calculation. Then,

P
(
type(N + 1) = i, N + 1 alive and isolated in GN+1,pN+1,κ,λ(N)(T )

∣∣∣GN,pN ,κ,λ(N)∣∣
[0,T ]

)
= P

(
type(N + 1) = i, N + 1 isolated in GN+1,pN+1,κ,λ(N)(0)

)
× P(N + 1 not struck by lightning on [0, T ]) × exp

(
−
∫ T

0
ΦN (s)ds

)
. (5.49)

Only the third of these terms is random. We now consider its expectation. Note that

the map f 7→ exp
(
−
∫ T

0 f(s)ds
)

from Cb([0, T ]) to R is continuous with respect to the

uniform topology on [0, T ]. Since ΦN d→ Φ uniformly on [0, T ], it follows that

lim
N→∞

E
[
exp

(
−
∫ T

0
ΦN (s)ds

)]
= exp

(
−
∫ T

0
Φ(s)ds

)
(5.47)

≥ exp
(

−1 −
∫ T

1

ds

s

)
= 1

Te
.

So, from (5.49) and the law of total probability,

πi(T ) ≥ lim sup
N→∞

P
(
type(N + 1) = i, N + 1 alive and isolated in GN+1,pN+1,κ,λ(N)(T )

)
≥
[

lim
N→∞

pN+1
i

N + 1e−κmax

][
lim

N→∞
e−λ(N+1)T

]
lim

N→∞
E
[
exp

(
−
∫ T

0
ΦN (s)ds

)]

≥ πi(0)e−κmax · 1
Te

. (5.50)

Combining (5.47) and (5.50), we obtain

πi(T )
Φ(T ) ≥ πi(0)e−(κmax+1)/T

1/T
= πi(0)e−(κmax+1),

and thus limT →∞
π(T )
Φ(T ) has positive components.
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